版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.2.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.3.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.4.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍5.展開(kāi)式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12806.函數(shù)()的圖像可以是()A. B.C. D.7.已知函數(shù)的圖像的一條對(duì)稱(chēng)軸為直線,且,則的最小值為()A. B.0 C. D.8.如圖,在棱長(zhǎng)為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個(gè)動(dòng)點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.9.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.10.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.11.若表示不超過(guò)的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.812.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過(guò)與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,點(diǎn)是邊的中點(diǎn),則__________,________.14.已知正方體ABCD-A1B1C1D1棱長(zhǎng)為2,點(diǎn)P是上底面15.已知數(shù)列是等比數(shù)列,,則__________.16.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則的值等于__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計(jì),該公司每年為這一萬(wàn)名參保人員支出的各種費(fèi)用為一百萬(wàn)元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購(gòu)買(mǎi)該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒(méi)有購(gòu)買(mǎi)該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購(gòu)買(mǎi)此項(xiàng)保險(xiǎn)是否劃算?19.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫(xiě)出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.20.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)恒成立,求的取值范圍.22.(10分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱(chēng),a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng),定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).2、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵唷嗝?,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.3、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.4、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.5、A【解析】
根據(jù)二項(xiàng)式展開(kāi)式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開(kāi)式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略:(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).6、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點(diǎn)睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.7、D【解析】
運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱(chēng)軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱(chēng)軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱(chēng)性與最值是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.8、C【解析】
把截面畫(huà)完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對(duì)稱(chēng)性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號(hào),∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問(wèn)題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個(gè)難點(diǎn),第二個(gè)難點(diǎn)是求出點(diǎn)軌跡,第三個(gè)難點(diǎn)是利用對(duì)稱(chēng)性及圓的性質(zhì)求得最小值.9、C【解析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問(wèn)題中組合數(shù)的應(yīng)用.10、B【解析】
利用復(fù)數(shù)乘法運(yùn)算化簡(jiǎn),由此求得.【詳解】依題意,所以.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.11、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.12、D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因?yàn)辄c(diǎn)是邊的中點(diǎn),所以故答案為:;.【點(diǎn)睛】本題主要考查了三角形的解法,向量的數(shù)量積的應(yīng)用,考查計(jì)算能力,屬于中檔題.14、π.【解析】
設(shè)三棱錐P-ABC的外接球?yàn)榍騉',分別取AC、A1C1的中點(diǎn)O、O1,先確定球心O'在線段AC和A1C1中點(diǎn)的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球?yàn)榍騉'分別取AC、A1C1的中點(diǎn)O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點(diǎn)P在上底面A1B1由于O'P=R=41因此,點(diǎn)P所構(gòu)成的圖形的面積為π×O【點(diǎn)睛】本題考查三棱錐的外接球的相關(guān)問(wèn)題,根據(jù)立體幾何中的線段關(guān)系求動(dòng)點(diǎn)的軌跡,屬于中檔題.15、【解析】
根據(jù)等比數(shù)列通項(xiàng)公式,首先求得,然后求得.【詳解】設(shè)的公比為,由,得,故.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量計(jì)算,屬于基礎(chǔ)題.16、【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線與過(guò)某點(diǎn)的切線的區(qū)別,本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)【解析】
對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)?,所以在上恒成?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費(fèi)的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計(jì)算參保與不參保時(shí)的期望,,比較大小即可.【詳解】解:(1)由,解得.保險(xiǎn)公司每年收取的保費(fèi)為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購(gòu)買(mǎi)了此項(xiàng)保險(xiǎn),則的取值為∴(元).②若該老人沒(méi)有購(gòu)買(mǎi)此項(xiàng)保險(xiǎn),則的取值為.∴(元).∴年齡為的該老人購(gòu)買(mǎi)此項(xiàng)保險(xiǎn)比較劃算.【點(diǎn)睛】本題考查學(xué)生利用相關(guān)統(tǒng)計(jì)圖表知識(shí)處理實(shí)際問(wèn)題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學(xué)期望是平均數(shù)的另一種數(shù)學(xué)語(yǔ)言,為容易題.19、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46913-2025養(yǎng)老機(jī)構(gòu)感染預(yù)防與控制規(guī)范
- GB/Z 46984.4-2026光伏電池第4部分:晶體硅光伏電池光熱誘導(dǎo)衰減試驗(yàn)方法
- 財(cái)務(wù)咨詢(xún)公司制度
- 落實(shí)監(jiān)理現(xiàn)場(chǎng)旁站制度
- 國(guó)際公法考試試題及答案
- 2026云南昆明市昆華實(shí)驗(yàn)中學(xué)招聘10人參考考試題庫(kù)附答案解析
- 2026廣東佛山市順德區(qū)容桂幸福陳占梅小學(xué)招募實(shí)習(xí)教師8人備考考試試題附答案解析
- 2026廣東中山市起鳳環(huán)社區(qū)居民委員會(huì)公益性崗位招聘2人參考考試題庫(kù)附答案解析
- 2026年上半年云南省科學(xué)技術(shù)廳直屬事業(yè)單位公開(kāi)招聘人員(8人)備考考試試題附答案解析
- 2026年普洱學(xué)院公開(kāi)招聘碩士附以上人員(12人)備考考試試題附答案解析
- 兒童組織細(xì)胞壞死性淋巴結(jié)炎診斷與治療專(zhuān)家共識(shí)解讀 2
- T∕ZZB 0623-2018 有機(jī)溶劑型指甲油
- 2025體彩知識(shí)考試題及答案
- 機(jī)械企業(yè)安全生產(chǎn)風(fēng)險(xiǎn)評(píng)估報(bào)告
- 馬匹性能智能評(píng)估-洞察及研究
- 中職班會(huì)課主題課件
- 政務(wù)服務(wù)大廳安全隱患排查
- 土建資料管理課件
- 鈑金檢驗(yàn)作業(yè)指導(dǎo)書(shū)
- 公司安全大講堂活動(dòng)方案
- 2025年江蘇省無(wú)錫市梁溪區(qū)八下英語(yǔ)期末統(tǒng)考模擬試題含答案
評(píng)論
0/150
提交評(píng)論