2025屆云南省通??h第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2025屆云南省通海縣第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2025屆云南省通??h第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2025屆云南省通海縣第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2025屆云南省通??h第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆云南省通海縣第三中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,角,,所對(duì)的邊分別為,,,若,,則等于()A.1 B.2 C. D.42.已知平面向量,,且,則等于()A. B. C. D.3.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β4.以下給出了4個(gè)命題:(1)兩個(gè)長(zhǎng)度相等的向量一定相等;(2)相等的向量起點(diǎn)必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個(gè)數(shù)共有()A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)5.在等差數(shù)列中,已知,數(shù)列的前5項(xiàng)的和為,則()A. B. C. D.6.同時(shí)拋擲兩枚骰子,朝上的點(diǎn)數(shù)之和為奇數(shù)的概率是()A. B. C. D.7.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.8.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點(diǎn),那么異面直線AE與DF所成角的余弦值為()A. B.C. D.9.若a,b是方程的兩個(gè)根,且a,b,2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值為()A.-4 B.-3 C.-2 D.-110.無窮數(shù)列1,3,6,10,…的通項(xiàng)公式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若方程表示圓,則實(shí)數(shù)的取值范圍是______.12.設(shè)向量,且,則__________.13.函數(shù)的最小正周期___________.14.正項(xiàng)等比數(shù)列中,,,則公比__________.15.求值:_____.16.已知,,若,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.求經(jīng)過直線的交點(diǎn),且滿足下列條件的直線方程:(1)與直線平行;(2)與直線垂直.18.在中,角A,B,C所對(duì)的邊分別為a,b,c,.(1)求角C;(2)若,,求的面積.19.在中,內(nèi)角所對(duì)的邊分別為,已知,且.(1)求;(2)若,求的值.20.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大??;(2)若a=2,△ABC的面積S=,且b>c,求b,c.21.已知的三個(gè)內(nèi)角,,的對(duì)邊分別為,,,函數(shù),且當(dāng)時(shí),取最大值.(1)若關(guān)于的方程,有解,求實(shí)數(shù)的取值范圍;(2)若,且,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

直接利用正弦定理得到,帶入化簡(jiǎn)得到答案.【詳解】正弦定理:即:故選D【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.2、B【解析】

先由求出,然后按照向量的坐標(biāo)運(yùn)算法則算出答案即可【詳解】因?yàn)?,,且所以,即,所以所以故選:B【點(diǎn)睛】若,則3、D【解析】

在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.4、D【解析】

利用向量的概念性質(zhì)和向量的數(shù)量積對(duì)每一個(gè)命題逐一分析判斷得解.【詳解】(1)兩個(gè)長(zhǎng)度相等的向量不一定相等,因?yàn)樗鼈兛赡芊较虿煌栽撁}是錯(cuò)誤的;(2)相等的向量起點(diǎn)不一定相同,只要它們方向相同長(zhǎng)度相等就是相等向量,所以該命題是錯(cuò)誤的;(3)若,且,則是錯(cuò)誤的,舉一個(gè)反例,如,不一定相等,所以該命題是錯(cuò)誤的;(4)若向量的模小于的模,則,是錯(cuò)誤的,因?yàn)橄蛄坎荒鼙容^大小,因?yàn)橄蛄考扔写笮∮钟蟹较颍试撁}不正確.故選:D【點(diǎn)睛】本題主要考查向量的概念和數(shù)量積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、C【解析】

由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項(xiàng)和為,公差為,因?yàn)?,所以,則,故.故選C.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和,考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】

分別求出基本事件的總數(shù)和點(diǎn)數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計(jì)算公式求解.【詳解】同時(shí)拋擲兩枚骰子,總共有種情況,朝上的點(diǎn)數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率的求法,屬于基礎(chǔ)題.7、B【解析】

通過成等比數(shù)列,可以列出一個(gè)等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關(guān)于的方程,解這個(gè)方程即可.【詳解】因?yàn)槌傻缺葦?shù)列,所以有,又因?yàn)槭枪顬?的等差數(shù)列,所以有,故本題選B.【點(diǎn)睛】本題考查了等比中項(xiàng)的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.8、C【解析】

連接DF,因?yàn)镈F與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設(shè)正方體的棱長(zhǎng)為2,則FD=FD=,由余弦定理得cos∠DFD==.9、D【解析】

由韋達(dá)定理確定,,利用已知條件討論成等差數(shù)列和等比數(shù)列的位置,從而確定的值.【詳解】由韋達(dá)定理得:,,所以,由題意這三個(gè)數(shù)可適當(dāng)排序后成等比數(shù)列,且,則2一定在中間所以,即因?yàn)檫@三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,且,則2一定不在的中間假設(shè),則即故選D【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的基本性質(zhì),解決本題的關(guān)鍵是要掌握三個(gè)數(shù)成等差數(shù)列和等比數(shù)列的性質(zhì),如成等比數(shù)列,且,,則2必為等比中項(xiàng),有.10、C【解析】試題分析:由累加法得:,分別相加得,,故選C.考點(diǎn):數(shù)列的通項(xiàng)公式.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

把圓的一般方程化為圓的標(biāo)準(zhǔn)方程,得出表示圓的條件,即可求解,得到答案.【詳解】由題意,方程可化為,方程表示圓,則滿足,解得.【點(diǎn)睛】本題主要考查了圓的一般方程與圓的標(biāo)準(zhǔn)方程的應(yīng)用,其中熟記圓的一般方程與圓的標(biāo)準(zhǔn)方程的互化是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ).12、【解析】因?yàn)椋?,故答案?13、【解析】

利用兩角和的正弦公式化簡(jiǎn)函數(shù)表達(dá)式,由此求得函數(shù)的最小正周期.【詳解】依題意,故函數(shù)的周期.故填:.【點(diǎn)睛】本小題主要考查兩角和的正弦公式,考查三角函數(shù)最小正周期的求法,屬于基礎(chǔ)題.14、【解析】

根據(jù)題意,由等比數(shù)列的性質(zhì)可得,進(jìn)而分析可得答案.【詳解】根據(jù)題意,等比數(shù)列中,,則,又由數(shù)列是正項(xiàng)的等比數(shù)列,所以.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式,以及注意數(shù)列是正項(xiàng)等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。16、【解析】

先算出的坐標(biāo),然后利用即可求出【詳解】因?yàn)椋砸驗(yàn)?,所以即,解得故答案為:【點(diǎn)睛】本題考查的是向量在坐標(biāo)形式下的相關(guān)計(jì)算,較簡(jiǎn)單.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)先求出,再設(shè)所求的直線為,代入求出后可得所求的直線方程.(2)設(shè)所求的直線為,代入求出后可得所求的直線方程.【詳解】(1)由題意知:聯(lián)立方程組,解得交點(diǎn),因?yàn)樗笾本€與直線平行,故設(shè)所求直線的方程為,代入,解得,即所求直線方程為(2)設(shè)與垂直的直線方程為因?yàn)檫^點(diǎn),代入得,故所求直線方程為【點(diǎn)睛】本題考查直線方程的求法,注意根據(jù)平行或垂直關(guān)系合理假設(shè)直線方程,本題屬于容易題.18、(1);(2)【解析】

(1)利用正弦定理進(jìn)行邊化角,然后得到的值,從而得到;(2)根據(jù)余弦定理,得到關(guān)于的方程,從而得到,再根據(jù)面積公式,得到答案.【詳解】(1)在中,根據(jù)正弦定理,由,可得,所以,因?yàn)闉閮?nèi)角,所以,所以因?yàn)闉閮?nèi)角,所以,(2)在中,,,由余弦定理得解得,所以.【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式,屬于簡(jiǎn)單題.19、(1);(2).【解析】

(1)根據(jù)誘導(dǎo)公式、正弦定理、同角三角函數(shù)基本關(guān)系式,結(jié)合已知等式,化簡(jiǎn),結(jié)合,可得A的值;(2)由已知根據(jù)余弦定理可得,利用正弦定理可得聯(lián)立即可解得λ的值.【詳解】(1),,;(2),,而,,而,所以有.【點(diǎn)睛】本題考查了誘導(dǎo)公式、正弦定理、同角三角函數(shù)基本關(guān)系式、余弦定理,考查了數(shù)學(xué)運(yùn)算能力.20、(1);(2).【解析】試題分析:(1)根據(jù)已知條件及余弦定理可求得的值,再由同角三角函數(shù)基本關(guān)系式可求得的值.因?yàn)?所以,由兩角和的正弦公式可將其化簡(jiǎn)變形,可求得與的關(guān)系式,從而可得.(2)根據(jù)余弦定理和三角形面積均可得的關(guān)系式.從而可解得的值.試題解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴聯(lián)立①②可得.考點(diǎn):1正弦定理;2余弦定理;3兩角和差公式.21、(1);(2).【解析】

(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結(jié)合已知可得:,求得:時(shí),,問題得解.(2)利用正弦定理可得:,結(jié)合可得:,對(duì)邊利用余弦定理可得:,結(jié)合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論