版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市同濟大附屬存志校中考數(shù)學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以取()A.11; B.6; C.3; D.1.2.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm3.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班9名學生進行了調查,有關數(shù)據(jù)如下表.則這9名學生每周做家務勞動的時間的眾數(shù)及中位數(shù)分別是()每周做家務的時間(小時)01234人數(shù)(人)22311A.3,2.5 B.1,2 C.3,3 D.2,24.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.175.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個6.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a37.關于x的方程3x+2a=x﹣5的解是負數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣8.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤9.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°10.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數(shù)是()A.0 B.1 C.2 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__.12.拋物線y=x2﹣2x+3的對稱軸是直線_____.13.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.14.計算:(a2)2=_____.15.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.16.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.18.(8分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當時,直接寫出的取值范圍.19.(8分)有一個n位自然數(shù)能被x0整除,依次輪換個位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個n位數(shù)是x0的一個“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個“輪換數(shù)”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個一個“輪換數(shù)”.(1)若一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,求證這個兩位自然數(shù)一定是“輪換數(shù)”.(2)若三位自然數(shù)是3的一個“輪換數(shù)”,其中a=2,求這個三位自然數(shù).20.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數(shù)關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.21.(8分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.(1)用含x的代數(shù)式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y(tǒng),求y關于x的函數(shù)關系式,并寫出它的定義域;(3)當∠ABE的正切值是時,求AB的長.22.(10分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.23.(12分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.24.已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大??;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大?。?/p>
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數(shù)中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.2、A【解析】試題分析:由折疊的性質知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.3、D【解析】試題解析:表中數(shù)據(jù)為從小到大排列.數(shù)據(jù)1小時出現(xiàn)了三次最多為眾數(shù);1處在第5位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選D.考點:1.眾數(shù);1.中位數(shù).4、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.5、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.6、D【解析】
根據(jù)平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.7、D【解析】
先解方程求出x,再根據(jù)解是負數(shù)得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數(shù),所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數(shù)時,不等號方向要改變.8、D【解析】
根據(jù)正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.9、B【解析】
根據(jù)平行線的性質得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.10、D【解析】
根據(jù)翻折變換的性質分別得出對應角相等以及利用等腰三角形的性質判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質以及角平分線的性質和等腰三角形的性質等知識,利用折疊前后對應角相等是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(-2,7).【解析】
解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).12、x=1【解析】
把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).13、【解析】分析:根據(jù)題意可以列出相應的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.14、a1.【解析】
根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.15、3<d<7【解析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.16、41【解析】
已知一元二次方程的根判別式為△=b2﹣4ac,代入計算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關鍵.三、解答題(共8題,共72分)17、(1)詳見解析;(2)36【解析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=18、(1)當0<x≤1時,PD=1-x,當1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解析】
(1)分點P在線段CD或在線段AD上兩種情形分別求解即可.
(2)分三種情形:①當5≤x≤1時,如圖1中,根據(jù)y=S△DPB,求解即可.②當1<x≤9時,如圖2中,根據(jù)y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據(jù)y=S△APQ+S△ABQ-S△PAB計算即可.
(3)根據(jù)(2)中結論即可判斷.【詳解】解:(1)當0<x≤1時,PD=1-x,
當1<x≤14時,PD=x-1.
(2)①當5≤x≤1時,如圖1中,
∵四邊形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=×?(1-x)?6=(1-x)=12-x.
②當1<x≤9時,如圖2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14時,如圖3中,y=S△APQ+S△ABQ-S△PAB=?(14-x)?(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
綜上所述,y=.
(3)由(2)可知:當5≤x≤9時,y=S△BDP.【點睛】本題屬于四邊形綜合題,考查了矩形的性質,三角形的面積等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.19、(1)見解析;(2)201,207,1【解析】試題分析:(1)先設出兩位自然數(shù)的十位數(shù)字,表示出這個兩位自然數(shù),和輪換兩位自然數(shù)即可;
(2)先表示出三位自然數(shù)和輪換三位自然數(shù),再根據(jù)能被5整除,得出b的可能值,進而用4整除,得出c的可能值,最后用能被3整除即可.試題解析:(1)設兩位自然數(shù)的十位數(shù)字為x,則個位數(shù)字為2x,∴這個兩位自然數(shù)是10x+2x=12x,∴這個兩位自然數(shù)是12x能被6整除,∵依次輪換個位數(shù)字得到的兩位自然數(shù)為10×2x+x=21x∴輪換個位數(shù)字得到的兩位自然數(shù)為21x能被7整除,∴一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,這個兩位自然數(shù)一定是“輪換數(shù)”.(2)∵三位自然數(shù)是3的一個“輪換數(shù)”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次輪換得到的三位自然數(shù)是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次輪換得到的三位自然數(shù)是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的個位數(shù)字不是0,便是5,∴b=0或b=5,當b=0時,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴這個三位自然數(shù)可能是為201,203,205,207,209,而203,205,209不能被3整除,∴這個三位自然數(shù)為201,207,當b=5時,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴這個三位自然數(shù)可能是為251,1,257,259,而251,257,259不能被3整除,∴這個三位自然數(shù)為1,即這個三位自然數(shù)為201,207,1.【點睛】此題是數(shù)的整除性,主要考查了3的倍數(shù),4的倍數(shù),5的倍數(shù)的特點,解本題的關鍵是用5的倍數(shù)求出b的值.20、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當⊙O與AC相切時,如圖3,設切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質等知識,綜合性較強,有一定的難度,以點P和Q運動為主線,畫出對應的圖形是關鍵,注意數(shù)形結合的思想.21、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質,求得∠DAC=∠ACD=45°,進而根據(jù)兩角對應相等的兩三角形相似,可得△CEF∽△CAE,然后根據(jù)相似三角形的性質和勾股定理可求解;(2)根據(jù)相似三角形的判定與性質,由三角形的周長比可求解;(3)由(2)中的相似三角形的對應邊成比例,可求出AB的關系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據(jù)勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.22、(1)乙;3;(2)甲先到達,到達目的地的時間差為小時;(3)速度慢的人提速后的速度為千米/小時.【解析】分析:(1)根據(jù)題意結合所給函數(shù)圖象進行判斷即可;(2)由所給函數(shù)圖象中的信息先求出二人所對應的函數(shù)解析式,再由解析式結合圖中信息求出二人到達C地的時間并進行比較、判斷即可得到本問答案;(3)根據(jù)圖象中的信息結合(2)中的結論進行解答即可.詳解:(1)由題意結合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中級銀行從業(yè)資格之中級公司信貸考試題庫300道及答案【典優(yōu)】
- 2026年設備監(jiān)理師之設備工程監(jiān)理基礎及相關知識考試題庫200道附答案(能力提升)
- 2026年材料員考試備考題庫含答案(鞏固)
- 2026年證券分析師之發(fā)布證券研究報告業(yè)務考試題庫300道及參考答案【a卷】
- 信息安全意識培訓方案設計
- 燃氣管網(wǎng)運行工崗后知識考核試卷含答案
- 2026年質量員之土建質量專業(yè)管理實務考試題庫200道含答案(黃金題型)
- 吉林省吉林市磐石市2024-2025學年九年級下學期中考第二次模擬考試道德與法制考試題目及答案
- 小學英語口語水平提升方案
- 小學語文綜合實踐活動設計與總結
- 汝瓷介紹教學課件
- 2025年大學《材料設計科學與工程-材料設計實驗技術》考試備考題庫及答案解析
- 亞朵酒店管理分析
- 幼兒園消防安全培訓知識培訓
- 代碼安全審計培訓大綱課件
- XJJ 068-2014 民用建筑電氣防火設計規(guī)程
- 質檢員安全培訓課件
- 科研項目進度管理與質量控制
- 《信息系統(tǒng)安全》課程教學大綱
- 民族學概論課件
- 新產(chǎn)品開發(fā)項目進度計劃表
評論
0/150
提交評論