版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-32.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.53.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.634.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.5.()A. B. C.1 D.6.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.157.已知全集為,集合,則()A. B. C. D.8.已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為()A.或 B.或 C.或 D.9.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.10.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}12.已知命題,那么為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是_____________.14.設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則______________.15.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.16.甲、乙、丙、丁四名同學(xué)報(bào)名參加淮南文明城市創(chuàng)建志愿服務(wù)活動,服務(wù)活動共有“走進(jìn)社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個(gè)項(xiàng)目,每人限報(bào)其中一項(xiàng),記事件為“4名同學(xué)所報(bào)項(xiàng)目各不相同”,事件為“只有甲同學(xué)一人報(bào)走進(jìn)社區(qū)項(xiàng)目”,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.18.(12分)如圖,過點(diǎn)且平行與x軸的直線交橢圓于A、B兩點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點(diǎn)E、F,求證:是定值.19.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.20.(12分)如圖,四棱錐中,底面,,點(diǎn)在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.21.(12分)已知為坐標(biāo)原點(diǎn),點(diǎn),,,動點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線:上點(diǎn)的縱坐標(biāo)為,.(1)求動點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個(gè)定值;若不是,請說明理由.22.(10分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.2、C【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.【詳解】由,得,解得.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.3、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.4、C【解析】試題分析:通過對以下四個(gè)四棱錐的三視圖對照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖5、A【解析】
利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】,∴,選B.7、D【解析】
對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.8、A【解析】
過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9、A【解析】
由復(fù)數(shù)的除法求出,然后計(jì)算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.10、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.11、C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.12、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由知x>0,故.令,則.當(dāng)時(shí),;當(dāng)時(shí),.所以在(0,e)上遞增,在(e,+)上遞減.故,即.14、【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.16、【解析】
根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:【點(diǎn)睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.18、(1);(2)證明見解析.【解析】
(1)由題意求得的坐標(biāo),代入橢圓方程求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,可得關(guān)于的一元二次方程,設(shè)出的坐標(biāo),分別求出直線與直線的方程,從而求得兩點(diǎn)的縱坐標(biāo),利用根與系數(shù)關(guān)系可化簡證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設(shè)直線CD的方程為,代入,得:設(shè),,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查計(jì)算能力,是難題.19、(1)見解析,(1)存在,【解析】
(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點(diǎn)求出的范圍,從而根據(jù)可得點(diǎn)的軌跡,進(jìn)而求出方程;(1)過點(diǎn)且斜率為的直線方程為,設(shè),,聯(lián)立直線方程和橢圓方程,根據(jù)韋達(dá)定理以及,,可得,根據(jù)其為定值,則有,進(jìn)而可得結(jié)果.【詳解】(1)因?yàn)椋?,所以,因?yàn)閳A的半徑為,圓的半徑為,又因?yàn)椋?,即,所以圓與圓有公共點(diǎn),設(shè)公共點(diǎn)為,因此,所以點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,所以,,,即軌跡的方程為;(1)過點(diǎn)且斜率為的直線方程為,設(shè),由消去得到,則,,①因?yàn)?,,所以,將①式代入整理得因?yàn)?,所以?dāng)時(shí),即時(shí),.即存在實(shí)數(shù)使得.【點(diǎn)睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問題,靈活應(yīng)用韋達(dá)定理進(jìn)行計(jì)算是關(guān)鍵,并且觀察出取定值的條件也很重要,考查了學(xué)生分析能力和計(jì)算能力,是中檔題.20、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.【點(diǎn)睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計(jì)算能力,屬于中檔題.21、(1)曲線的標(biāo)準(zhǔn)方程為.拋物線的標(biāo)準(zhǔn)方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點(diǎn)P的軌跡W是橢圓,寫出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運(yùn)算和點(diǎn)A在拋物線上求出拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)出點(diǎn)P的坐標(biāo),再表示出點(diǎn)N和Q的坐標(biāo),根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【詳解】(1)由題知,,所以,因此動點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,又知,,所以曲線的標(biāo)準(zhǔn)方程為.又由題知,所以,所以,又因?yàn)辄c(diǎn)在拋物線上,所以,所以拋物線的標(biāo)準(zhǔn)方程為.(2)設(shè),,由題知,所以,即,所以,又因?yàn)?,,所以,所以為定值,且定值?.【點(diǎn)睛】本題考查了圓錐曲線的定義與性質(zhì)的應(yīng)用問題,考查拋物線的幾何性質(zhì)及點(diǎn)在曲線上的代換,也考查了推理與運(yùn)算能力,是中檔題.22、(1),;(2).【解析】
(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京公務(wù)員考試真題庫《行測》大全(能力提升)
- 廣西壯族自治區(qū)公務(wù)員考試《行測》題庫(有一套)
- 2026年福州英華職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案
- 遼寧省公務(wù)員考試《行測》題庫及答案(新)
- 南平市建陽區(qū)總醫(yī)院關(guān)于2025年緊缺急需崗位編外人員招聘考試題庫及答案1套
- 寧波人才投資有限公司2025年第三批人員招聘備考題庫必考題
- 深圳鵬城技師學(xué)院招聘工作人員(2025年11月)考試題庫附答案
- 西北工業(yè)大學(xué)自動化學(xué)院王小旭教授團(tuán)隊(duì)招聘考試題庫附答案
- 南京理工大學(xué)圖書館招聘勞務(wù)派遣人員備考題庫必考題
- 通榆縣信訪信息中心公開選調(diào)事業(yè)編制工作人員備考題庫必考題
- 2025年秋人教版(2024)初中美術(shù)七年級上冊期末知識點(diǎn)復(fù)習(xí)卷及答案
- 2025年高校行政面試題及答案
- 調(diào)車服務(wù)合同范本
- 2025年新《中國傳統(tǒng)文化》考試復(fù)習(xí)題(附答案)
- 行車搬遷改造協(xié)議書
- 遼寧省遼西重點(diǎn)高中2025-2026學(xué)年高一上學(xué)期11月期中考試數(shù)學(xué)試題(原卷版)
- 甘肅省慶陽市七區(qū)2024-2025學(xué)年高一上學(xué)期期末聯(lián)考語文試題
- 人教版小升初考試數(shù)學(xué)試卷(含解析)重慶市渝北區(qū)魯能巴蜀小學(xué)2025年
- 2025年福建省綜合評標(biāo)專家?guī)炜荚囶}庫(二)
- 2024蘇州大學(xué)輔導(dǎo)員招聘筆試真題及答案
- 倉庫安全管理臺賬模板
評論
0/150
提交評論