版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.2.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.153.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則4.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-135.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}6.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.7.若sin(α+3π2A.-12 B.-138.設(shè),且,則()A. B. C. D.9.在中,,則()A. B. C. D.10.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱(chēng)軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.11.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.12.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,那么該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則______.14.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國(guó)”的答題活動(dòng),要從4道題中隨機(jī)抽取2道作答,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的概率為_(kāi)____.15.在中,角的對(duì)邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.函數(shù)的圖象向右平移個(gè)單位后,與函數(shù)的圖象重合,則_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過(guò)拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.18.(12分)己知的內(nèi)角的對(duì)邊分別為.設(shè)(1)求的值;(2)若,且,求的值.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于M,N兩點(diǎn),求△MON的面積.21.(12分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大小;(2)求的最大值.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】,∴,選B.3、C【解析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時(shí),也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時(shí),能得到,故本命題是正確的;D:當(dāng)時(shí),也可以滿足,b∥,故本命題不正確.故選:C【點(diǎn)睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.4、B【解析】
由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.5、D【解析】
解一元二次不等式化簡(jiǎn)集合,再由集合的交集運(yùn)算可得選項(xiàng).【詳解】因?yàn)榧?,故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.6、D【解析】
設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱(chēng)性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱(chēng)性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.8、C【解析】
將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡(jiǎn)單題目.9、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦模?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.10、D【解析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.11、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.12、A【解析】
由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過(guò)雙曲線的焦點(diǎn)的弦長(zhǎng)求離心率.弦過(guò)焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng).二、填空題:本題共4小題,每小題5分,共20分。13、121【解析】
在所給的等式中令,,令,可得2個(gè)等式,再根據(jù)所得的2個(gè)等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生分析問(wèn)題的能力,屬于基礎(chǔ)題,難度較易.14、【解析】
從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會(huì)的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的情況共有種,所以其概率為.故答案為:【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個(gè)數(shù).15、【解析】
由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進(jìn)而根據(jù)余弦定理,基本不等式可求的最大值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時(shí)取等號(hào)),即最大值為4,面積的最大值為.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.16、【解析】
根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個(gè)單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)4【解析】
(1)將點(diǎn)P橫坐標(biāo)代入拋物線中求得點(diǎn)P的坐標(biāo),利用點(diǎn)P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點(diǎn)坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計(jì)算的值即可.【詳解】(1)將點(diǎn)P橫坐標(biāo)代入中,求得,∴P(2,),,點(diǎn)P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點(diǎn)為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問(wèn)題,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.18、(1)(2)【解析】
(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因?yàn)?,則,因?yàn)?,故,故,解得,故,則.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.19、(1)單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡(jiǎn)為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)?,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)?,即證,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對(duì)于恒成立,即,即,故,即證,故原不等式得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問(wèn)題,屬于中檔題.20、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對(duì)曲線C的極坐標(biāo)方程兩邊同時(shí)乘以,利用可得曲線C的直角坐標(biāo)方程;(2)求出點(diǎn)到直線的距離,再求出的弦長(zhǎng),從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因?yàn)棣眩?sin所以ρ=2sinθ+2cosθ,兩邊同時(shí)乘以得,ρ2=2ρsinθ+2ρcosθ,因?yàn)?,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標(biāo)方程是圓:(x-)2+(y-1)2=4.(2)∵原點(diǎn)O到直線l的距離直線l過(guò)圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點(diǎn)睛】本題考查了直線與圓的極坐標(biāo)方程與普通方程、參數(shù)方程與普通方程的互化知識(shí),解題的關(guān)鍵是正確使用這一轉(zhuǎn)化公式,還考查了直線與圓的位置關(guān)系等知識(shí).21、(1)(2)2【解析】
(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.22、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】
(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年一級(jí)建造師道路工程知識(shí)點(diǎn)強(qiáng)化練習(xí)題
- 醫(yī)院檢驗(yàn)科操作規(guī)范(標(biāo)準(zhǔn)版)
- 醫(yī)療護(hù)理操作規(guī)范與技能培訓(xùn)(標(biāo)準(zhǔn)版)
- 未來(lái)五年薄膜沉積設(shè)備企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略分析研究報(bào)告
- 未來(lái)五年楊梅樹(shù)皮企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略分析研究報(bào)告
- 旅游住宿業(yè)衛(wèi)生管理指南(標(biāo)準(zhǔn)版)
- 舞蹈教師聘用合同協(xié)議2025年
- 2025年洛陽(yáng)市澗西區(qū)事業(yè)單位真題
- 通信基站安全防護(hù)與維護(hù)指南(標(biāo)準(zhǔn)版)
- 環(huán)保監(jiān)測(cè)技術(shù)操作規(guī)程(標(biāo)準(zhǔn)版)
- 2025血管內(nèi)導(dǎo)管相關(guān)性血流感染預(yù)防與診治指南
- 品牌設(shè)計(jì)師年終總結(jié)
- 煤礦智能化發(fā)展藍(lán)皮書(shū)
- 居住證明合同協(xié)議
- 2024-2025閩教版小學(xué)英語(yǔ)五年級(jí)上冊(cè)期末考試測(cè)試卷及參考答案(共3套)
- 組件設(shè)計(jì)文檔-MBOM構(gòu)型管理
- 臨床協(xié)調(diào)員CRC年度總結(jié)
- 編鐘樂(lè)器市場(chǎng)洞察報(bào)告
- 負(fù)壓沖洗式口腔護(hù)理
- 凈化車(chē)間液氮洗操作規(guī)程
- 《中電聯(lián)標(biāo)準(zhǔn)-抽水蓄能電站鋼筋混凝土襯砌水道設(shè)計(jì)導(dǎo)則》
評(píng)論
0/150
提交評(píng)論