內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷含解析_第1頁
內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷含解析_第2頁
內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷含解析_第3頁
內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷含解析_第4頁
內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古興安盟地區(qū)兩旗一縣市級名校2023-2024學(xué)年中考數(shù)學(xué)五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.2.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣43.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.4.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<105.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.126.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.107.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)8.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20179.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.1110.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.1411.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.12.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過點(1,2),則b的值為_____.14.分解因式:mx2﹣4m=_____.15.已知,,,是成比例的線段,其中,,,則_______.16.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.17.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.18.大自然是美的設(shè)計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.20.(6分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.21.(6分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(8分)已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度數(shù);(2)當AD=2時,求對角線BD的長和梯形ABCD的面積.23.(8分)某年級組織學(xué)生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:該年級報名參加丙組的人數(shù)為;該年級報名參加本次活動的總?cè)藬?shù),并補全頻數(shù)分布直方圖;根據(jù)實際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?24.(10分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發(fā),以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發(fā).如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結(jié)果保留根號)25.(10分)咸寧市某中學(xué)為了解本校學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應(yīng)扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計分析,估計該校名學(xué)生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓(xùn),請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率26.(12分)如圖,在平面直角坐標系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標;(2)設(shè)x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.27.(12分)某門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.該門市為促銷制定了兩種優(yōu)惠方案:方案一:買一件甲種商品就贈送一件乙種商品;方案二:按購買金額打八折付款.某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.(1)分別直接寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購買最實惠.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,

故選:A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.2、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.3、B【解析】

根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應(yīng)成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.4、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質(zhì)、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關(guān)鍵.5、B【解析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結(jié)合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.6、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.7、C【解析】

直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.8、A【解析】

利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.9、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內(nèi)角和外角.10、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.11、C【解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.12、C【解析】

先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】

把點(1,2)代入解析式解答即可.【詳解】解:把點(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點睛】本題考查的是一次函數(shù)的圖象點的關(guān)系,關(guān)鍵是把點(1,2)代入解析式解答.14、m(x+2)(x﹣2)【解析】

提取公因式法和公式法相結(jié)合因式分解即可.【詳解】原式故答案為【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.15、【解析】

如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據(jù)定義ad=cb,將a,b及c的值代入即可求得d.【詳解】已知a,b,c,d是成比例線段,根據(jù)比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【點睛】本題主要考查比例線段的定義.要注意考慮問題要全面.16、【解析】

利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.17、【解析】

過點B作BD⊥AC于D,設(shè)AH=BC=2x,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設(shè)AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.18、(15﹣5)【解析】

先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).【點睛】本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標即可;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標即可.【詳解】(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是(2,-2);(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是(1,0),故答案為(1)(2,-2);(2)(1,0)【點睛】此題考查了作圖-位似變換與平移變換,熟練掌握位似變換與平移變換的性質(zhì)是解本題的關(guān)鍵.20、見解析【解析】

由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對角線互相平分,即可得OA=OC,易證得△AEO≌△CFO,由全等三角形的對應(yīng)邊相等,可得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定,屬于簡單題,熟悉平行四邊形的性質(zhì)和全等三角形的判定方法是解題關(guān)鍵.21、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、:(1)30o;(2).【解析】分析:(1)由已知條件易得∠ABC=∠A=60°,結(jié)合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)過點D作DH⊥AB于點H,則∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,結(jié)合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,這樣即可由梯形的面積公式求出梯形ABCD的面積了.詳解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60o,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30o,(2)在△ACD中,∵∠ADB=180o–∠A–∠ABD=90o.∴BD=ADA=2tan60o=2.過點D作DH⊥AB,垂足為H,∴AH=ADA=2sin60o=.∵∠CDB=∠CBD=∠CBD=30o,∴DC=BC=AD=2∵AB=2AD=4∴.點睛:本題是一道應(yīng)用等腰梯形的性質(zhì)求解的題,熟悉等腰梯形的性質(zhì)和直角三角形中30°的角所對直角邊是斜邊的一半及等腰三角形的判定,是正確解答本題的關(guān)鍵.23、(1)21人;(2)10人,見解析(3)應(yīng)從甲抽調(diào)1名學(xué)生到丙組【解析】(1)參加丙組的人數(shù)為21人;(2)21÷10%=10人,則乙組人數(shù)=10-21-11=10人,如圖:(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)題意得:3(11-x)=21+x解得x=1.答:應(yīng)從甲抽調(diào)1名學(xué)生到丙組(1)直接根據(jù)條形統(tǒng)計圖獲得數(shù)據(jù);(2)根據(jù)丙組的21人占總體的10%,即可計算總體人數(shù),然后計算乙組的人數(shù),補全統(tǒng)計圖;(3)設(shè)需從甲組抽調(diào)x名同學(xué)到丙組,根據(jù)丙組人數(shù)是甲組人數(shù)的3倍列方程求解24、李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A【解析】過點A作AD⊥BC于點D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分鐘)答:李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A25、(1)72;(2)700;(3).【解析】試題分析:(1)根據(jù)動畫類人數(shù)及其百分比求得總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論