山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷含解析_第1頁
山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷含解析_第2頁
山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷含解析_第3頁
山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷含解析_第4頁
山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省淄博市桓臺區(qū)重點名校2024屆中考數(shù)學(xué)押題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米2.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標(biāo)原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應(yīng)點C′的坐標(biāo)為()A.(,2) B.(4,1) C.(4,) D.(4,)3.如圖,AB是的直徑,點C,D在上,若,則的度數(shù)為A. B. C. D.4.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°5.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°6.實數(shù)的倒數(shù)是()A. B. C. D.7.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.8.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.9.《九章算術(shù)》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.10.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點C為弧BD的中點,若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.化簡__________.12.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.13.如圖,在矩形ABCD中,AB=4,AD=2,以點A為圓心,AB長為半徑畫圓弧交邊DC于點E,則的長度為______.14.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.15.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.16.分解因式:ax2-a=______.17.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.19.(5分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣120.(8分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.21.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標(biāo).22.(10分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.23.(12分)下面是一位同學(xué)的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截取.(4)聯(lián)結(jié),過點B作,交于點D.所以:線段________就是所求的線段x.①試將結(jié)論補完整②這位同學(xué)作圖的依據(jù)是________③如果,,,試用向量表示向量.24.(14分)已知:如圖所示,在中,,,求和的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!2、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結(jié)論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質(zhì),坐標(biāo)與圖形的性質(zhì),勾股定理,正確的識別圖形是解題關(guān)鍵.3、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.4、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.5、B【解析】

先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.6、D【解析】因為=,所以的倒數(shù)是.故選D.7、A【解析】

分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,

由②,得x<1,

所以不等式組的解集是:2≤x<1.

不等式組的解集在數(shù)軸上表示為:

故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.8、B【解析】

由正數(shù)大于一切負(fù)數(shù),負(fù)數(shù)小于0,正數(shù)大于0,兩個負(fù)數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數(shù)為-2;

故選:B.【點睛】本題考查了實數(shù)的大小比較,關(guān)鍵是掌握:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù)絕對值大的反而?。?、A【解析】

設(shè)甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關(guān)于x,y的二元一次方程組,此題得解.【詳解】解:設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.10、C【解析】連接OC,因為點C為弧BD的中點,所以∠BOC=∠DAB=50°,因為OC=OB,所以∠ABC=∠OCB=65°,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)分式的運算法則先算括號里面,再作乘法亦可利用乘法對加法的分配律求解.【詳解】解:法一、=(-)==2-m.

故答案為:2-m.

法二、原式===1-m+1

=2-m.

故答案為:2-m.【點睛】本題考查分式的加減和乘法,解決本題的關(guān)鍵是熟練運用運算法則或運算律.12、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.13、【解析】試題解析:連接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的長度為:=.考點:弧長的計算.14、1【解析】分析:首先根據(jù)正比例函數(shù)得出a的值,然后將交點坐標(biāo)代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點坐標(biāo)為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎(chǔ)題型.根據(jù)正比例函數(shù)得出交點坐標(biāo)是解題的關(guān)鍵.15、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結(jié)繩計數(shù)”為背景,按滿六進(jìn)一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.16、【解析】

先提公因式,再套用平方差公式.【詳解】ax2-a=a(x2-1)=故答案為:【點睛】掌握因式分解的一般方法:提公因式法,公式法.17、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)1+【解析】

(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學(xué)生對圓的認(rèn)識,熟練掌握圓的性質(zhì)是解題的關(guān)鍵.19、1【解析】

本題涉及絕對值、特殊角的三角函數(shù)值、負(fù)指數(shù)冪、二次根式化簡、乘方5個考點,先針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果即可.【詳解】解:原式=2﹣+2×﹣3+1=1.【點睛】本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關(guān)鍵是熟練掌握絕對值、特殊角的三角函數(shù)值、負(fù)指數(shù)冪、二次根式化簡、乘方等考點的運算.20、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質(zhì)即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識,把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進(jìn)而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.21、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標(biāo),最大值=,進(jìn)而計算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點P作軸交AD于點G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時,作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時,當(dāng)時,當(dāng)時,Q3綜上所述,滿足條件點點Q坐標(biāo)為或或或22、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進(jìn)而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進(jìn)行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論