版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter9d’AlembertPrincipleandVirtualDisplacementPrinciple§9.4Constraint,virtualdisplacement,virtualwork§9.5Principleofvirtualdisplacement§9.1InertialForceandd’AlembertPrincipleofaParticle§9.2d’AlembertPrincipleofaSystemofParticles§9.3ReductionofaSystemofInertialForcesofaRigidBodyMainContentsInthischapter,wewilldiscussd’Alembertprinciple,itprovidesageneralmethodtosolvethekineticproblemofaparticleandasystemofparticles,themethodisthatthemethodsofstaticsareappliedtosolvekineticsproblems,thuskineticproblemscanbetransformedformallytoanequivalentstaticproblems,theycanbesolvedbytheoremofequilibrium.Thusthismethodiscalledthekinetic-staticmethod.Applyingthekinetic-staticmethodwecandeterminethemotion,forexampleaccelerationangularacceleration;canalsodeterminetheforce.D’Alembert’sPrincipleApplyingNewtonsecondlaw,wehave§9.1Inertialforceandd’AlembertprincipleofaparticleAssumingmassofaparticleis,accelerateis,activeforceactingontheparticleis,constraintforceis,showninfigure.AboveequationistransposedandwrittenasMaking
Wehave
hasthedimensionofforce,iscalledtheinertialforceofparticle:itsmagnitudeisequaltotheproductofmassandaccelerationofparticle,itsdirectioniscontrarytothedirectionofparticleacceleration.Theactiveforce,constraintforceandvirtualinertialforceactingontheparticlecomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofaparticle.OlθExamole
9-1§9.1Inertialforceandd’AlembertprincipleofaparticleShowninfigure,aconicalpendulum.Aballofmassm=0.1kgtiesaropeoflengthl=0.3m,oneendoftheropetiestoafixedpointO,andtheanglewiththeleadstraightlineisθ=60o.Ifthesmallballmakeuniformcircularmotioninthehorizontalplane,determinethevelocityoftheballvandthemagnitudeoftensionFoftherope.OlθenetebmgF*Example9-1FSolution:choosethesmallballastheparticletostudy.Theparticlemakesuniformcircularmotion,onlyhavenormalacceleration,theforcesactingontheparticleincludesgravitymg,pullingforceFofropeandnormalinertialforceF*,showninfigure.Accordingtod’Alembertprinciple,thethreeforcescomposedformallyequilibratedsystem,thatisTakingtheprojectionformulaofaboveequationinnaturalaxis,wehave:§9.1InertialforceandD’Alembert’sprincipleofaparticleExample
9-1OlθenetebmgF*FSolutionis:§9.1InertialforceandD’Alembert’sprincipleofaparticleAssumingssystemofparticlescomposedofnparticles,massofanyparticleiis,
accelerationis,allforcesactingontheparticleisdividedintoresultantforceofactiveforce,resultantforceofconstraintforce,theparticleisimaginarilyplusitsinertialforce,accordingtod’Alembertprincipleofaparticle,wehaveAboveequationshows,theactiveforce,constraintforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofasystemofparticles.Thisshows,externalforce,internalforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces.§9.1InertialforceandD’Alembert’sprincipleofaparticleAllforcesactingtheithparticlearedividedintoresultantforceofexternalforce,
resultantforceofinternalforce,andaboveequationcanbewrittenasBystaticsweknowthatnecessaryandsufficientconditionofequilibriumofspacialgeneralforcesystemisthattheprincipalvectoroftheforcesystemandtheprincipalmomentaboutanypointisequaltozero,thatisAboveequationshows,externalforceactingonsystemofparticlesandinertialforcevirtualaddingoneveryparticlecomposeformallyequilibratedsystemofforces,thisisanotherrepresentationofd’Alembertprincipleofasystemofparticles.§9.2D’Alembert’sprincipleofasystemofparticlesSinceInternalforcesofthesystemofparticlesalwaysexistinpairs
,
andisequalinmagnitudeandoppositeindirection,andcollinear,
thenwehaveand
,henceInstatics,
iscalledtheprincipalvector,
istheprincipalmomentaboutpointO,nowiscalledtheprincipalvectorofinertialforcesystem,
istheprincipalmomentofinertialforcesystemaboutpointO.AccordingtoD’Alembert’sprincipleofasystemofparticles,thisisformallyaequilibratedsystemofforces,
hencewecanapplymethodofstaticsforsolvingvariousequilibratedforcesystemtosolvekineticproblem.§9.2D’Alembert’sprincipleofasystemofparticlesOABrExample
9-2Showninfigure,theradiusofpulleyisr,massmuniformlydistributedintherim,canrotatearoundthehorizontalaxis.Bothendsofthesoftropeacrosstherimhangheavybodyofmass
m1andm2,andm1>m2.Neglectweightofrope,thereisnorelativeslidingbetweenropeandpulley,neglectbearingfriction.Determinetheaccelerationofheavybody.§9.2D’Alembert’sprincipleofasystemofparticlesOABryExample
9-2aam1gmgm2gFNSolution:choosepulleyandthetwoheavybodiesasthesystemofparticlestobestudied.Theexternalforcesactingonthesystemincludegravitym1g,m2g,mgandbearingconstraintforces
FN.Eachparticleofthesystemisvirtuallyaddedinertialforce,wecanapplyd’Alembertprinciple.Weknowm1>m2,thenthedirectionofaccelerationaofheavybodyshowninfigure.Thedirectionofinertialforceofheavybodyisoppositetothedirectionofaccelerationa,magnitudearerespectively:§9.2D’Alembert’sprincipleofasystemofparticlesorExample
9-2OABraam1gmgm2gFNymiApplyingequationofmomentofforceaboutrotatingaxis,weobtain
§9.2D’Alembert’sprincipleofasystemofparticlesMassofeachpointonpulleyedgeismi,magnitudeoftangentialinertialforceis,directionisalongtherimtangentline,pointasshowninfigure.Whenthereisnorelativeslidingbetweenropeandpulley,;magnitudeofnormalinertialforceis,directionisalongradiusanddeparturefromthecenter.
sinceSolutionisExample
9-2OABraam1gmgm2gFNymi§9.2D’Alembert’sprincipleofasystemofparticles§9.3ReductionofasystemofinertialforcesofarigidbodyThisexpressionisestablishedaboutanymotionofanysystemofparticles,alsoappliestotherigidbodythatmakestranslation,fixedaxisrotationandplanemotion.Inthefollowingweintroducereductionofasystemofinertialforcesinthreecommoncases.Applyingd’Alembertprincipleofasystemofparticlestosolvekineticproblemofthesystem,
eachparticleofthesystemisaddeditsinertialforce,
theseinertialforcesformasystemofforces,
whichiscalledinertialforcesystem.Ifusingsimplifiedtheoryofforcesysteminstatics,
todeterminetheprincipalvectorandtheprincipalmomentintheinertialforcesystem,
substituteinertialforceaddedtoeachparticlewhenwespecificallysolve,
itwillbringconveniencetosolveproblem.Inthefollowingweonlydiscussreductionofinertialforcesystemintranslationofrigidbody,
fixedaxisrotationandplanemotion.representstheprinciplevectorofinertialforcesystem,
accordingtoandtheoremofmotionofmasscenter,
wehave1.RigidbodyintranslationRigidbodyisintranslation,
ateveryinstantaccelerationofanyparticleiinrigidbodyisthesameasaccelerationofmasscenter,
here,
inertialforcesystemofrigidbodydistributesinfigure,
arbitrarilychooseapointOassimplifiedcenter,
representstheprincipalmoment,
wehaveWhenrigidbodyisintranslation,theprinciplemomentofinertialforceaboutarbitrarypointisgenerallynotequaltozero.Ifchoosemasscenterassimplifiedcenter,itsprincipalmomentiszero,simplifiedasaresultantforce.Henceweconclude:inertialforcesystemoftranslationalrigidbodycanbesimplifiedtoresultantforcethroughmasscenter,itsmagnitudeisequaltotheproductofmassofrigidbodyandacceleration,thedirectionofresultantforceisoppositetothedirectionofacceleration.§9.3ReductionofasystemofinertialforcesofarigidbodyWhere,
isradiusvectorfrommasscenterCtosimplifiedcenterO,theprinciplemomentisgenerallynotequaltozero.IfchoosemasscenterCassimplifiedcenter,representtheprincipalmoment,then,
wehave2.Fixedaxisrotationofarigidbody§9.3ReductionofasystemofinertialforcesofarigidbodyInertialforceofparticlecanbedividedintotangentialinertialforceandnormalinertialforce
,andtheirdirectionsshowninfigure,magnitudearerespectivelyWhenrigidbodyisinfixedaxisrotation,assumingangularvelocityofrigidbodyis,angularaccelerationis,massofanyparticleinrigidbodyis,thedistancetorotatingaxisis,theninertialforceofanyparticleinrigidbodyis.Forsimplicity,arbitrarilychooseapointO
onrotatingaxisassimplifiedcenter,establishrectangularcoordinatesystemshowninfigure,coordinatesoftheparticleisIftherigidbodyhasaplaneofmasssymmetryandtheplaneisverticaltotherotatingaxisz,andthesimplifiedcenter
ischosentobetheintersectionpointofthisplanewiththerotatingaxisz,thenMomentofinertialforcesystemaboutaxisz
is
Sincenormalinertialforceofeachparticlepassthroughaxisz,
wehave§9.3Reductionofasystemofinertialforcesofarigidbody3.Rigidbodyinplanemotion(paralleltothemasssymmetryplane)§9.3ReductionofasystemofinertialforcesofarigidbodyInengineering,rigidbodyinplanemotionoftenhasmasssymmetryplane,andparalleltotheplanemotion,nowonlyinthiscasewediscussreductionofasystemofinertialforces.Similartorotationofrigidbodyaroundfixedaxis,rigidbodyisinplanemotion,spaceforcesystemcomposedofinertialforcesofeachparticle,canbesimplifiedtoplaneforcesysteminthemasssymmetryplane.Chooseplanefigureinthemasssymmetrypaneasshowninfigure.Bykinematicsweknow,motionofplanefigurecanbedividedintotranslationwiththebasepointandrotationaroundthebasepoint.NowchoosemasscenterCasthebasepoint,assumingtheaccelerationofmasscenteris,angularvelocityofrotationaroundmasscenteris,angularaccelerationis,similartorotationofrigidbodyaroundfixedaxis,nowtheprincipalmomentofreductionofasystemofinertialforcestomasscenterCisWhere
isthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplane.§9.3ReductionofasystemofinertialforcesofarigidbodySoweconclude:
rigidbodyhavethemasssymmetryplane,
whenmovingparalleltotheplane,
asystemofinertialforcesofrigidbodyisreducedtoaforceandacoupleintheplane.Theforcepassesthroughmasscenter,
itsmagnitudeisequaltotheproductofmassofrigidbodyandaccelerationofmasscenter,
itsdirectionisoppositetothedirectionofaccelerationofmasscenter;
momentofthecoupleisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplaneandangularacceleration,
rotatingdirectionisoppositetoangularacceleration.xyωm1gm2gCOhφExample
9-3§9.3ReductionofasystemofinertialforcesofarigidbodyShowninfigure,massofstatorofelectricmotorism1,mountedonahorizontalbase.ThedistancebetweenrotatingaxisOandhorizontalplaneish,and
massofrotorism2,itsmasscenterisC,eccentricdistanceOC=e,whenmotionbegins,masscenterCisatthelowestposition.Rotorrotateswithconstantangularvelocityω,determinetheconstraintforceofthebaseactingontheelectricmotor.Example
9-3xyωm1gm2gCOhφFyFxMAF*Solution:choosethewholemotorasobjecttobestudied.Theforcesincludegravitym1gandm2g,constraintforceofbaseandgroundscrewactingontheelectricmotorsimplifiedtopointAasacoupleMandaforceF(showninfigureFxandFy).Thesystemofparticlesisaddedtoinertialforce.RotoruniformlyrotatesaboutfixedaxisOwithangularvelocityω,thesystemofinertialforceisreducedaforcethroughpointO,magnitudeisItsdirectionisoppositetoaccelerationaCofmasscenterC.SinceaCisalongOCandpointstocenterO,
F*isalongOCanddepartsfrompointO.§9.3ReductionofasystemofinertialforcesofarigidbodyExample
9-3xyωm1gm2gCOhφFyFxMAF*Accordingtod’Alembertprinciple,activeforce,constraintforceandinertialforceactingonthesystemofparticlesformallycomposeequilibriumforcesystem,wecanwriteequilibriumequation:Sincerotoruniformlyrotates,φ=ωt
,substitutingitintoaboveequations,weobtain:§9.3ReductionofasystemofinertialforcesofarigidbodymAgmgFABCExample
9-4MassofhomogeneousdiscismA,radiusisr.Lengthofslenderrodisl=2r,massism.PointAofrodendhingedsmoothlytowheelcenter,showninfigure.IfpointAsufferedahorizontalpullingforceF,makewheelrollalonghorizontalplane.DeterminethemagnitudeofforceF,whenendBofrodjustlefttheground.Inordertoensurepurerolling,determinecoefficientofstaticslidingfrictionbetweenthewheelandtheground.§9.3ReductionofasystemofinertialforcesofarigidbodyBCmgAF*CFAxFAyamAgmgFABCExample
9-4F*AF*CM*Accordingtokinetic-staticmethod,wewriteequationSolutionis
§9.3ReductionofasystemofinertialforcesofarigidbodySolution:whenslenderrodleftthegrounditisstillintranslation,andconstraintforceofgroundisequaltozero,assumingitsaccelerationisa.Chooserodasobjecttobestudied,theforcesactingonrodandaddinginertialforceasshowninfigure,where
Theforcesactingonthewholesystemandaddinginertialforcesasshowninfigure,whereAccordingtoequationweobtainmAgmgFABCF*AF*CM*FNFsExample
9-4Frictionofground
Inordertodeterminefriction,choosethewheelasobjecttobestudied.Solutionis
§9.3ReductionofasystemofinertialforcesofarigidbodyApplyingequationweobtainAmAgFFNF*AM*FsExample
9-4Thus,coefficientoffrictionofground§9.3ReductionofasystemofinertialforcesofarigidbodyAFNF*AF*CmAgmgFBCM*FsThenchoosethewholesystemasobjecttobestudied,
byequation,weobtainmAgFAFNF*AM*FsPrincipleofvirtualdisplacement:§9.4Constraint,virtualdisplacement,virtualworkToestablishtheequilibriumconditionsforthesystemofmasspointsindependentoftheNewtonianmechanicssystem.Newtoniansystemofmechanics:Vectormechanics,whichdescribesmechanicalquantitiesthatarerepresentedbyvectors,suchasvectordiameter,velocity,acceleration,angularvelocityandangularacceleration.Analyticalmechanicssystem:Scalarmechanics,whichdescribesphysicalquantitiesasscalars,suchasgeneralizedcoordinates,energyandwork.Theprincipleofvirtualdisplacementisbasedonanalyticalmechanicstoestablishthesufficientconditionsfortheequilibriumofthesystem,whichhasawidersignificancethantheequilibriumconditionsestablishedbyNewtonianmechanics.1.Constraintsandtheirclassification(1)Therestrictionsonthemotionofanobjectarecalledconstraints.Expressedasamathematicalequation,whichiscalledconstraintequation.Forexample:xφOyM(x,y)ιPlanependulumconstraintequation§9.4Constraint,virtualdisplacement,virtualwork2.Classificationofconstraints§9.4Constraint,virtualdisplacement,virtualworkGeometricconstraint:restrictonlythegeometricpositionofaparticle.Motionconstraint:theconstraintequationcontainsthederivativeoftheparticlecoordinates(withrespecttotime).Steadyconstraint:theconstraintisindependentoftime,i.e.,theconstraintequationdoesnotcontaintimet.Unsteadyconstraint:
theconstraintisdependentoftime,i.e.,thetimetisincludedintheconstraintequation.Holonomicconstraint:
includinggeometricconstraintsandmotionconstraintsthatcanbereducedtogeometricconstraints.Nonholonomicconstraint:amotionconstraintcannotbereducedtoageometricconstraint.3.
VirtualdisplacementAtacertaininstant,anyinfinitesimaldisplacementthattheparticlesystemmayachieveundertheconditionsallowedbyconstraintsiscalledthevirtualdisplacementoftheparticlesystem(atthatinstant).Thevirtualdisplacementcanbeeitheralineardisplacementoranangulardisplacement.Usually,thevariationalsymbolδisusedtorepresentvirtualdisplacement.Inthefollowingtwoexamples,δφ,δrAand
δrBareallvirtualdisplacement.xφOyMδφδs(+)xBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualwork4.Differencebetweenvirtualdisplacementandrealdisplacement
Realdisplacementisthetruedisplacementachievedbyaparticlesystemwithi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標志物AI輔助發(fā)現(xiàn)的監(jiān)管框架
- 生物打印技術(shù)在肝臟移植中的替代方案探索
- 銀行金融行業(yè)崗位技能測評題庫與答案解析
- 生存質(zhì)量評估工具
- 生物制藥研發(fā)員面試專業(yè)知識測試
- 證券從業(yè)資格考試科目重點突破與模擬測試含答案
- 建筑預(yù)算員工作手冊及考核題目
- 年產(chǎn)xxx塑料水表項目可行性分析報告
- 預(yù)約員崗位面試題庫含答案
- 程序員求職寶典常見面試題庫與答題策略
- 2026云南昆明鐵道職業(yè)技術(shù)學院校園招聘4人考試筆試參考題庫及答案解析
- 模板工程技術(shù)交底
- 廣東省廣州市越秀區(qū)2024-2025學年上學期期末考試九年級數(shù)學試題
- 2025年區(qū)域經(jīng)濟一體化發(fā)展模式可行性研究報告及總結(jié)分析
- 醫(yī)療器械全生命周期有效性管理策略
- 排水管道養(yǎng)護試題及答案
- 外科術(shù)后護理與康復(fù)指導
- 2025 中藥藥理學(溫里藥藥理)考試及答案
- 工業(yè)粉塵治理系統(tǒng)設(shè)計
- 胰腺癌手術(shù)后護理措施
- 核電站課件教學課件
評論
0/150
提交評論