2022-2023學(xué)年河南省平頂山市舞鋼市九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第1頁
2022-2023學(xué)年河南省平頂山市舞鋼市九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第2頁
2022-2023學(xué)年河南省平頂山市舞鋼市九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第3頁
2022-2023學(xué)年河南省平頂山市舞鋼市九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第4頁
2022-2023學(xué)年河南省平頂山市舞鋼市九年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列事件是必然事件的是()A.任意購買一張電影票,座號是“7排8號” B.射擊運動員射擊一次,恰好命中靶心C.拋擲一枚圖釘,釘尖觸地 D.13名同學(xué)中,至少2人出生的月份相同2.若關(guān)于的方程,它的一根為3,則另一根為()A.3 B. C. D.3.某車的剎車距離y(m)與開始剎車時的速度x(m/s)之間滿足二次函數(shù)(x>0),若該車某次的剎車距離為5m,則開始剎車時的速度為()A.40m/s B.20m/sC.10m/s D.5m/s4.某農(nóng)機廠四月份生產(chǎn)零件50萬個,第二季度共生產(chǎn)零件182萬個.設(shè)該廠第二季度平均每月的增長率為,那么滿足的方程是()A. B.C. D.5.下列式子中,為最簡二次根式的是()A. B. C. D.6.函數(shù)與拋物線的圖象可能是().A. B. C. D.7.中,,,,的值為()A. B. C. D.28.平移拋物線y=﹣(x﹣1)(x+3),下列哪種平移方法不能使平移后的拋物線經(jīng)過原點()A.向左平移1個單位 B.向上平移3個單位C.向右平移3個單位 D.向下平移3個單位9.若點A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函數(shù)的圖象上,則下列結(jié)論正確的是()A. B. C. D.10.在同一平面直角坐標(biāo)系中,若拋物線與關(guān)于y軸對稱,則符合條件的m,n的值為()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-211.已知xy=1A.32 B.13 C.212.在10張獎券中,有2張中獎,某人從中任抽一張,則他中獎的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.已知:如圖,在平面上將繞點旋轉(zhuǎn)到的位置時,,則為__________度.14.x臺拖拉機,每天工作x小時,x天耕地x畝,則y臺拖拉機,每天工作y小時,y天耕____畝.15.已知二次函數(shù)(a是常數(shù),a≠0),當(dāng)自變量x分別取-6、-4時,對應(yīng)的函數(shù)值分別為y1、y2,那么y1、y2的大小關(guān)系是:y1__y2(填“>”、“<”或“=”).16.等腰Rt△ABC中,斜邊AB=12,則該三角形的重心與外心之間的距離是_____.17.如圖,分別以正五邊形ABCDE的頂點A,D為圓心,以AB長為半徑畫,若,則陰影部分圖形的周長為______結(jié)果保留.18.如圖,△ABC內(nèi)接于⊙O,∠ACB=35o,則∠OAB=o.三、解答題(共78分)19.(8分)已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運動,⊙O與邊CD僅有一個公共點E.(1)如圖1,若圓心O在線段MD上,點M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關(guān)系,并說明理由;(2)如圖2,⊙O與邊AD交于點F,連接MF,過點M作MF的垂線與邊CD交于點G,若,設(shè)點O與點M之間的距離為,EG=,當(dāng)時,求的函數(shù)解析式.20.(8分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF,BE.(1)求證:直線CF為⊙O的切線;(2)若DE=6,求⊙O的半徑長.21.(8分)1896年,挪威生理學(xué)家古德貝發(fā)現(xiàn),每個人有一條腿邁出的步子比另一條腿邁出的步子長的特點,這就導(dǎo)致每個人在蒙上眼睛行走時,雖然主觀上沿某一方向直線前進,但實際上走出的是一個大圓圈!這就是有趣的“瞎轉(zhuǎn)圈”現(xiàn)象.經(jīng)研究,某人蒙上眼睛走出的大圓圈的半徑米是其兩腿邁出的步長之差厘米的反比例函數(shù),其圖象如圖所示.請根據(jù)圖象中的信息解決下列問題:(1)求與之間的函數(shù)表達式;(2)當(dāng)某人兩腿邁出的步長之差為厘米時,他蒙上眼睛走出的大圓圈的半徑為______米;(3)若某人蒙上眼睛走出的大圓圈的半徑不小于米,則其兩腿邁出的步長之差最多是多少厘米?22.(10分)如圖,直線y=﹣x+3與x軸、y軸分別交于B、C兩點,拋物線y=﹣x2+bx+c經(jīng)過B、C兩點,與x軸另一交點為A,頂點為D.(1)求拋物線的解析式;(2)在x軸上找一點E,使△EDC的周長最小,求符合條件的E點坐標(biāo);(3)在拋物線的對稱軸上是否存在一點P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,請說明理由.23.(10分)在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.1.(1)這個袋中A、B、C三種球各多少個?(2)若小明從口袋中隨機模出1個球后不放回,再隨機摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.24.(10分)(1)(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學(xué)教材第77頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖23.4.2,寫出完整的證明過程.(2)(結(jié)論應(yīng)用)如圖,△ABC是等邊三角形,點D在邊AB上(點D與點A、B不重合),過點D作DE∥BC交AC于點E,連結(jié)BE,M、N、P分別為DE、BE、BC的中點,順次連結(jié)M、N、P.①求證:MN=PN;②∠MNP的大小是.25.(12分)“江畔”禮品店在十一月份從廠家購進甲、乙兩種不同禮品.購進甲種禮品共花費1500元,購進乙種禮品共花費1050元,購進甲種禮品數(shù)量是購進乙種禮品數(shù)量的2倍,且購進一件乙種禮品比購進一件甲種禮品多花20元.(1)求購進一件甲種禮品、一件乙種禮品各需多少元;(2)元旦前夕,禮品店決定再次購進甲、乙兩種禮品共50個.恰逢該廠家對兩種禮品的價格進行調(diào)整,一件甲種禮品價格比第一次購進時提高了30%,件乙種禮品價格比第次購進時降低了10元,如果此次購進甲、乙兩種禮品的總費用不超過3100元,那么這家禮品店最多可購進多少件甲種禮品?26.如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點F.(1)求證:△ACD∽△BFD;(2)當(dāng)tan∠ABD=1,AC=3時,求BF的長.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)必然事件的定義即可得出答案.【詳解】ABC均為隨機事件,D是必然事件,故答案選擇D.【點睛】本題考查的是必然事件的定義:一定會發(fā)生的事情.2、C【分析】設(shè)方程的另一根為t,根據(jù)根與系數(shù)的關(guān)系得到3+t=2,然后解關(guān)于t的一次方程即可.【詳解】設(shè)方程的另一根為t,

根據(jù)題意得:3+t=2,

解得:t=-1,

即方程的另一根為-1.

故選:C.【點睛】本題主要考查了一元二次方程根與系數(shù)的關(guān)系:是一元二次方程的兩根時,,.3、C【解析】當(dāng)y=5時,則,解之得(負(fù)值舍去),故選C4、B【分析】由題意根據(jù)增長后的量=增長前的量×(1+增長率),如果該廠五、六月份平均每月的增長率為x,那么可以用x分別表示五、六月份的產(chǎn)量,進而即可得出方程.【詳解】解:設(shè)該廠五、六月份平均每月的增長率為x,那么得五、六月份的產(chǎn)量分別為50(1+x)、50(1+x)2,根據(jù)題意得50+50(1+x)+50(1+x)2=1.故選:B.【點睛】本題考查由實際問題抽象出一元二次方程的增長率問題,注意掌握其一般形式為a(1+x)2=b,a為起始時間的有關(guān)數(shù)量,b為終止時間的有關(guān)數(shù)量,x為增長率.5、B【分析】利用最簡二次根式定義判斷即可.【詳解】A、原式,不符合題意;B、是最簡二次根式,符合題意;C、原式,不符合題意;D、原式,不符合題意;故選B.【點睛】此題考查了最簡二次根式,熟練掌握最簡二次根式是解本題的關(guān)鍵.6、C【分析】一次函數(shù)和二次函數(shù)與y軸交點坐標(biāo)都是(0,1),然后再對a分a>0和a<0討論即可.【詳解】解:由題意知:與拋物線與y軸的交點坐標(biāo)均是(0,1),故排除選項A;當(dāng)a>0時,一次函數(shù)經(jīng)過第一、二、三象限,二次函數(shù)開口向上,故其圖像有可能為選項C所示,但不可能為選項B所示;當(dāng)a<0時,一次函數(shù)經(jīng)過第一、二、四象限,二次函數(shù)開口向下,不可能為為選項D所示;故選:C.【點睛】本題考查了一次函數(shù)與二次函數(shù)的圖像關(guān)系,熟練掌握函數(shù)的圖像與系數(shù)之間的關(guān)系是解決本類題的關(guān)鍵.7、C【分析】根據(jù)勾股定理求出斜邊AB的值,在利用余弦的定義直接計算即可.【詳解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故選:C.【點睛】本題主要考查銳角三角函數(shù)的定義,解決此類題時,要注意前提條件是在直角三角形中,此外還有熟記三角函數(shù)是定義.8、B【分析】先將拋物線解析式轉(zhuǎn)化為頂點式,然后根據(jù)頂點坐標(biāo)的平移規(guī)律即可解答.【詳解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1個單位后的解析式為:y=-(x+2)2+4,當(dāng)x=0時,y=0,即該拋物線經(jīng)過原點,故本選項不符合題意;B、向上平移3個單位后的解析式為:y=-(x+1)2+7,當(dāng)x=0時,y=3,即該拋物線不經(jīng)過原點,故本選項符合題意;C、向右平移3個單位后的解析式為:y=-(x-2)2+4,當(dāng)x=0時,y=0,即該拋物線經(jīng)過原點,故本選項不符合題意.;D、向下平移3個單位后的解析式為:y=-(x+1)2+1,當(dāng)x=0時,y=0,即該拋物線經(jīng)過原點,故本選項不符合題意.【點睛】本題考查了二次函數(shù)圖像的平移,函數(shù)圖像平移規(guī)律:上移加,下移減,左移加,右移減.9、D【分析】先利用頂點式得到拋物線對稱軸為直線x=-1,再比較點A、B、C到直線x=-1的距離,然后根據(jù)二次函數(shù)的性質(zhì)判斷函數(shù)值的大小.【詳解】解:二次函數(shù)的圖象的對稱軸為直線x=-1,a=-1<0,所以該函數(shù)開口向下,且到對稱軸距離越遠的點對應(yīng)的函數(shù)值越小,A(﹣2,y1)距離直線x=-1的距離為1,B(﹣1,y2)距離直線x=-1的距離為0,C(4,y3)距離距離直線x=-1的距離為5.B點距離對稱軸最近,C點距離對稱軸最遠,所以,故選:D.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征.熟練掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.10、D【解析】由兩拋物線關(guān)于y軸對稱,可知兩拋物線的對稱軸也關(guān)于y軸對稱,與y軸交于同一點,由此可得二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),由此可得關(guān)于m、n的方程組,解方程組即可得.【詳解】關(guān)于y軸對稱,二次項系數(shù)與常數(shù)項相同,一次項系數(shù)互為相反數(shù),∴,解之得,故選D.【點睛】本題考查了關(guān)于y軸對稱的拋物線的解析式間的關(guān)系,弄清系數(shù)間的關(guān)系是解題的關(guān)鍵.11、A【解析】由題干可得y=2x,代入x+yy【詳解】∵xy∴y=2x,∴x+yy故選A.【點睛】本題考查了比例的基本性質(zhì):兩內(nèi)項之積等于兩外項之積.即若ab=cd,則12、D【分析】根據(jù)概率的計算方法代入題干中的數(shù)據(jù)即可求解.【詳解】由題意知:概率為,故選:D【點睛】此題考查概率的計算方法:即發(fā)生事件的次數(shù)除以總數(shù)即可.二、填空題(每題4分,共24分)13、1【分析】結(jié)合旋轉(zhuǎn)前后的兩個圖形全等的性質(zhì)以及平行線的性質(zhì),進行計算.【詳解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案為:1.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)以及平行線的性質(zhì).解題時注意:對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.14、【分析】先求出一臺拖拉機1小時的工作效率,然后求y臺拖拉機在y天,每天工作y小時的工作量.【詳解】一臺拖拉機1小時的工作效率為:∴y臺拖拉機,y天,每天y小時的工作量=故答案為:【點睛】本題考查工程問題,解題關(guān)鍵是求解出一臺拖拉機1小時的工作效率.15、>【分析】先求出拋物線的對稱軸為,由,則當(dāng),y隨x的增大而減小,即可判斷兩個函數(shù)值的大小.【詳解】解:∵二次函數(shù)(a是常數(shù),a≠0),∴拋物線的對稱軸為:,∵,∴當(dāng),y隨x的增大而減小,∵,∴;故答案為:.【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)進行解題.16、1.【分析】畫出圖形,找到三角形的重心與外心,利用重心和外心的性質(zhì)求距離即可.【詳解】如圖,點D為三角形外心,點I為三角形重心,DI為所求.∵直角三角形的外心是斜邊的中點,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案為:1.【點睛】本題主要考查三角形的重心和外心,能夠掌握三角形的外心和重心的性質(zhì)是解題的關(guān)鍵.17、+1.【詳解】解:∵五邊形ABCDE為正五邊形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==?πAB=,∴C陰影=++BC=+1.故答案為+1.18、55【解析】分析:∵∠ACB與∠AOB是所對的圓周角和圓心角,∠ACB=35o,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.三、解答題(共78分)19、(1)相切,證明詳見解析;(2).【分析】(1)過O作OF⊥AD于F,連接OE,可證△ODF≌△ODE,可得OF=OE,根據(jù)相切判定即可得出:AD與相切;(2)連接MC,可證,可得DF=CG,過點E作EP⊥BD于P,過點F作FH⊥BD于H設(shè)DP=a,DH=b,由于△DHF與△DPE都是等腰直角三角形,設(shè)EP=DP=a,F(xiàn)H=DH=b,利用勾股定理:可列出方程組解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y與x的函數(shù)解析式,由DF≤1,EG≥0,可得x的取值范圍,即可求解問題.【詳解】解:(1)直線AD與⊙O相切,理由如下:過O作OF⊥AD于F,連接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵與CD僅有一個公共點E∴CD與相切∴OE⊥DC,OE為半徑∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD與相切(2)連接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M為正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG過點E作EP⊥BD于P,過點F作FH⊥BD于H設(shè)DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF與△DPE都是等腰直角三角形∴EP=DP=a,F(xiàn)H=DH=b∵,且由(1)得∴點O在正方形ABCD外∴OP=OD+DP,OH=OD+DH在Rt△OPE與Rt△OHF中得:(a-b)(OD+a+b)=0∴a-b=0或OD+a+b=0∵OD+a+b>0∴a-b=0∴a=b即點P與點H重合,也即EF⊥BD,垂足為P(或H)∵DP=a,DH=b∵在Rt△DPE中,在Rt△DHF中,∴DF=DE∵CD=DE+EG+CG=2,即2DF+EG=2∴2DF+y=2∵在Rt△DPF中,,且∴在Rt△OPE與Rt△OHF中∴∴OD+a=2a∴OD=a又因為OD=OM-DM,即∴又因為2DF+y=2∴∴∴∵DF≤1,且2DF+EG=2∴EG≥0,即y≥0∴∴∴y與x的函數(shù)解析式為【點睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、三角形全等的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識,學(xué)會利用參數(shù),構(gòu)建方程以及方程組解決問題.20、(1)詳見解析;(2)3【分析】(1)連接OD,由BC為⊙O的直徑,點E為△ABC的內(nèi)心,證得OD⊥BC,再根據(jù)中位線定理證得OD∥CF,即可證得結(jié)論;(2)根據(jù)圓周角定理證得∠EBD=∠BED,即BD=DE,根據(jù)正弦函數(shù)即可求出半徑的長【詳解】(1)連接OD∵BC為⊙O的直徑∴∠BAC=90°∵點E為△ABC的內(nèi)心∴∠CAD=∠BAD=45°,∠ABE=∠EBC∴∠BOD=∠COD=90°,即OD⊥BC又BD=DF,OB=OC∴OD∥CF∴BC⊥CF,BC為⊙O的直徑∴直線CF為⊙O的切線;(2)∵,∴∠CAD=∠CBD,∵OD⊥BC,∴,∴∠CBD=∠BAE,又∵∠ABE=∠EBC,∴∠EBD=∠EBC+∠CBD=∠BAE+∠ABE=∠BED,∴BD=DE=6,Rt△OBD中OB=OD,∴OB=BD=×6=3,【點睛】本題考查三角形的內(nèi)切圓與內(nèi)心、切線的判定、等腰三角形的判定、直角三角形的判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,屬于中考??碱}型.21、(1);(2);(3)步數(shù)之差最多是厘米,【分析】(1)用待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)即求當(dāng)時的函數(shù)值;(3)先求得當(dāng)時的函數(shù)值,再判斷當(dāng)時的函數(shù)值的范圍.【詳解】(1)設(shè)反比例函數(shù)解析式為,將,代入解析式得:,解得:,反比例函數(shù)解析式為;(2)將代入得;(3)反比例函數(shù),在每一象限隨增大而減小,當(dāng)時,,解得:,當(dāng)時,,步數(shù)之差最多是厘米.【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,掌握反比例函數(shù)圖象上點的坐標(biāo)特征是正確解答本題的關(guān)鍵.22、(1)y=﹣x2+2x+3;(2)點E(,0);(3)PB2的值為16+8.【分析】(1)求出點B、C的坐標(biāo)分別為(3,0)、(0,3),將點B、C的坐標(biāo)代入二次函數(shù)表達式,即可求解;(2)如圖1,作點C關(guān)于x軸的對稱點C′,連接CD′交x軸于點E,則此時EC+ED為最小,△EDC的周長最小,即可求解;(3)分點P在x軸上方、點P在x軸下方兩種情況,由勾股定理可求解.【詳解】(1)直線y=﹣x+3與x軸、y軸分別交于B、C兩點,令x=0,則y=3,令y=0,則x=3,∴點B、C的坐標(biāo)分別為(3,0)、(0,3),將點B、C的坐標(biāo)代入二次函數(shù)表達式得:,解得:,故函數(shù)的表達式為:y=﹣x2+2x+3;(2)如圖1,作點C關(guān)于x軸的對稱點C′,連接CD′交x軸于點E,此時EC+ED為最小,則△EDC的周長最小,令x=0,則﹣x2+2x+3=0,解得:,∴點A的坐標(biāo)為(-1,0),∵y=﹣x2+2x+3,∴拋物線的頂點D的坐標(biāo)為(1,4),則點C′的坐標(biāo)為(0,﹣3),設(shè)直線C′D的表達式為,將C′、D的坐標(biāo)代入得,解得:,∴直線C′D的表達式為:y=7x﹣3,當(dāng)y=0時,x=,故點E的坐標(biāo)為(,0);(3)①當(dāng)點P在x軸上方時,如圖2,∵點B、C的坐標(biāo)分別為(3,0)、(0,3),∴OB=OC=3,則∠OCB=45°=∠APB,過點B作BH⊥AP于點H,設(shè)PH=BH=a,則PB=PA=a,由勾股定理得:AB2=AH2+BH2,∴16=a2+(a﹣a)2,解得:a2=8+4,則PB2=2a2=16+8;②當(dāng)點P在x軸下方時,同理可得.綜合以上可得,PB2的值為16+8.【點睛】本題是二次函數(shù)綜合題,考查了一次函數(shù)圖象上點的坐標(biāo)特征,待定系數(shù)法,勾股定理,等腰三角形的性質(zhì),點的對稱性等知識,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)這個袋中A、B、C三種球分別為1個、1個、2個;(2)【分析】(1)由題意列方程,解方程即可;(2)首先畫樹狀圖,由概率公式即可得出答案.【詳解】解:由題意得:[x+x+(x+1)]=x,解得:x=1,∴x+1=2,答:這個袋中A、B、C三種球分別為1個、1個、2個;(2)由題意,畫樹狀圖如圖所示共有12個等可能的結(jié)果,摸到1個A球和1個C球的結(jié)果有4個,∴摸到1個A球和1個C球的概率為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意方程思想的應(yīng)用.24、(1)見詳解;(2)①見詳解;②120°【分析】教材呈現(xiàn):證明△ADE∽△ABC即可解決問題.結(jié)論應(yīng)用:(1)首先證明△ADE是等邊三角形,推出AD=AE,BD=CE,再利用三角形的中位線定理即可證明.(2)利用三角形的中位線定理以及平行線的性質(zhì)解決問題即可.【詳解】教材呈現(xiàn):證明:∵點D,E分別是AB,AC的中點,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,,∴DE∥B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論