2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題含解析_第1頁
2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題含解析_第2頁
2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題含解析_第3頁
2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題含解析_第4頁
2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年浙江省杭州市蕭山區(qū)中考五模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.2022年冬奧會,北京、延慶、張家口三個賽區(qū)共25個場館,北京共12個,其中11個為2008年奧運會遺留場館,唯一一個新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學記數(shù)法表示應為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×102.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構(gòu)造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)3.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.4.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解5.關(guān)于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.26.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設(shè)AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.7.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或48.在平面直角坐標系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限9.如果解關(guān)于x的分式方程時出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-410.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3二、填空題(本大題共6個小題,每小題3分,共18分)11.一個多項式與的積為,那么這個多項式為.12.計算(﹣a2b)3=__.13.如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,DE平分∠BDC交BC于點E,則=.14.已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為_____.15.如圖,直線l1∥l2∥l3,等邊△ABC的頂點B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.16.已知式子有意義,則x的取值范圍是_____三、解答題(共8題,共72分)17.(8分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,求的值.18.(8分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.19.(8分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:根據(jù)圖中提供的信息,解答下列問題:(1)補全頻數(shù)分布直方圖(2)求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù)(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)21.(8分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.22.(10分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)23.(12分)為了保護視力,學校開展了全校性的視力保健活動,活動前,隨機抽取部分學生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學生的視力,結(jié)果如表所示分組頻數(shù)4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動所抽取的學生人數(shù);(2)若視力達到4.8及以上為達標,計算活動前該校學生的視力達標率;(3)請選擇適當?shù)慕y(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.24.(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】數(shù)據(jù)12000用科學記數(shù)法表示為1.2×104,故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.2、B【解析】

作出圖形,結(jié)合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.3、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點睛】掌握分類討論的方法是本題解題的關(guān)鍵.4、C【解析】

先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關(guān)鍵.5、D【解析】

解不等式得到x≥m+3,再列出關(guān)于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關(guān)于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集6、D【解析】分析:由圖1、圖2結(jié)合題意可知,當DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結(jié)合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當DP⊥AB于點P時,DP最短=”是解答本題的關(guān)鍵.7、D【解析】

直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關(guān)鍵.8、D【解析】

先根據(jù)第一象限內(nèi)的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【點睛】本題考查了點的坐標,解決本題的關(guān)鍵是牢記平面直角坐標系中各個象限內(nèi)點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.9、D【解析】

,去分母,方程兩邊同時乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當x=1時,m+4=1﹣1,m=﹣4,故選D.10、C【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進而解答即可.【詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點睛】此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:依題意知=考點:整式運算點評:本題難度較低,主要考查學生對整式運算中多項式計算知識點的掌握。同底數(shù)冪相乘除,指數(shù)相加減。12、?a6b3【解析】

根據(jù)積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運算法則.13、3-【解析】試題分析:因為△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因為BD平分∠ABC交AC于點D所以∠ABD=∠CBD=36°=∠A因為DE平分∠BDC交BC于點E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根據(jù)黃金三角形的性質(zhì)知,BCAC=5-1EC=所以EC考點:黃金三角形點評:黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當?shù)捉潜黄椒謺r,角平分線分對邊也成黃金比,14、1【解析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個菱形的面積為:AC?BD=×6×8=1.15、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點:1.平行線的性質(zhì);2.等邊三角形的性質(zhì).16、x≤1且x≠﹣1.【解析】根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.三、解答題(共8題,共72分)17、【解析】

根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設(shè)AE與CD相交于F,根據(jù)等角對等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對應邊成比,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對邊相等求出AB,然后代入進行計算即可得解.【詳解】解:∵矩形沿直線AC折疊,點B落在點E處,∴CE=BC,∠BAC=∠CAE,∵矩形對邊AD=BC,∴AD=CE,設(shè)AE、CD相交于點F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設(shè)EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【點睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關(guān)鍵,也是本題的難點.18、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】

(1)設(shè)購買A種花木x棵,B種花木y棵,根據(jù)“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設(shè)購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)“B花木的數(shù)量不少于A花木的數(shù)量”求得a的范圍,再設(shè)購買總費用為W,列出W關(guān)于a的解析式,利用一次函數(shù)的性質(zhì)求解可得.【詳解】解析:(1)設(shè)購買A種花木x棵,B種花木y棵,根據(jù)題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設(shè)購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)題意,得:100﹣a≥a,解得:a≤50,設(shè)購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.考點:一元一次不等式的應用;二元一次方程組的應用.19、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、略;m=40,1.4°;870人.【解析】試題分析:根據(jù)A組的人數(shù)和比例得出總?cè)藬?shù),然后得出D組的人數(shù),補全條形統(tǒng)計圖;根據(jù)C組的人數(shù)和總?cè)藬?shù)得出m的值,根據(jù)E組的人數(shù)求出E的百分比,然后計算圓心角的度數(shù);根據(jù)D組合E組的百分數(shù)總和,估算出該校的每周的課外閱讀時間不小于6小時的人數(shù).試題解析:(1)補全頻數(shù)分布直方圖,如圖所示.(2)∵10÷10%=100∴40÷100=40%∴m=40∵4÷100=4%∴“E”組對應的圓心角度數(shù)=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估計該校學生中每周的課外閱讀時間不小于6小時的人數(shù)是870人.考點:統(tǒng)計圖.21、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設(shè)點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數(shù)綜合運用.解題關(guān)鍵點:熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.22、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論