2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第1頁
2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第2頁
2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第3頁
2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第4頁
2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省寧波市惠貞書院數(shù)學(xué)九上期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.從下列直角三角板與圓弧的位置關(guān)系中,可判斷圓弧為半圓的是()A. B.C. D.2.一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>23.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則cos∠ABC等于()A. B. C. D.4.如圖所示的工件的主視圖是()A. B. C. D.5.拋物線y=ax2+bx+c(a≠0)形狀如圖,下列結(jié)論:①b>0;②a﹣b+c=0;③當(dāng)x<﹣1或x>3時,y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有兩個不相等的實數(shù)根.正確的有()A.4個 B.3個 C.2個 D.1個6.一個布袋里裝有10個只有顏色不同的球,其中4個黃球,6個白球.從布袋里任意摸出1個球,則摸出的球是黃球的概率為()A. B. C. D.7.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數(shù)是()A.44° B.22° C.46° D.36°8.的直徑為,點與點的距離為,點的位置()A.在⊙O外 B.在⊙O上 C.在⊙O內(nèi) D.不能確定9.如圖.已知的半徑為3,,點為上一動點.以為邊作等邊,則線段的長的最大值為()A.9 B.11 C.12 D.1410.下列實數(shù)中,有理數(shù)是()A.﹣2 B. C.﹣1 D.π二、填空題(每小題3分,共24分)11.已知四個點的坐標(biāo)分別為A(-4,2),B(-3,1),C(-1,1),D(-2,2),若拋物線y=ax2與四邊形ABCD的邊沒有交點,則a的取值范圍為____________.12.分解因式:___.13.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于E.則直線CD與⊙O的位置關(guān)系是_______,陰影部分面積為(結(jié)果保留π)________.14.如圖,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的P點處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為________米.15.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.16.如圖,在?ABCD中,AD=7,AB=2,∠B=60°.E是邊BC上任意一點,沿AE剪開,將△ABE沿BC方向平移到△DCF的位置,得到四邊形AEFD,則四邊形AEFD周長的最小值為_____.17.已知二次函數(shù)y=-x2+2x+1,若y隨x增大而增大,則x的取值范圍是____.18.小明和小紅在太陽光下行走,小明身高1.5m,他的影長2.0m,小紅比小明矮30cm,此刻小紅的影長為______m.三、解答題(共66分)19.(10分)已知反比例函數(shù)y=(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;(2)如圖,反比例函數(shù)y=(1≤x≤4)的圖象記為曲線Cl,將Cl向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移至C2處所掃過的面積.20.(6分)如圖,已知AB經(jīng)過圓心O,交⊙O于點C.(1)尺規(guī)作圖:在AB上方的圓弧上找一點D,使得△ABD是以AB為底邊的等腰三角形(保留作圖痕跡);(2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.21.(6分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.(1)在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應(yīng)點分別為).畫出線段;(2)將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;(3)以為頂點的四邊形的面積是個平方單位.22.(8分)問題發(fā)現(xiàn):(1)如圖1,內(nèi)接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準(zhǔn)備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.23.(8分)在一個不透明的盒子里裝有4個標(biāo)有1,2,3,4的小球,它們形狀、大小完全相同.小明從盒子里隨機取出一個小球,記下球上的數(shù)字,作為點P的橫坐標(biāo)x,放回然后再隨機取出一個小球,記下球上的數(shù)字,作為點P的縱坐標(biāo)y.(1)畫樹狀圖或列表,寫出點P所有可能的坐標(biāo);(2)求出點P在以原點為圓心,5為半徑的圓上的概率.24.(8分)隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩個統(tǒng)計圖.(1)本次調(diào)查的學(xué)生共有人,估計該校1200名學(xué)生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.25.(10分)如圖,在平面直角坐標(biāo)系中,己知點,點在軸上,并且,動點在過三點的拋物線上.(1)求拋物線的解析式.(2)作垂直軸的直線,在第一象限交直線于點,交拋物線于點,求當(dāng)線段的長有最大值時的坐標(biāo).并求出最大值是多少.(3)在軸上是否存在點,使得△是等腰三角形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.26.(10分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標(biāo).(2)將△ABC繞點O順時針旋轉(zhuǎn)90°,請畫出旋轉(zhuǎn)后的△A2B2C2,并求點B所經(jīng)過的路徑長(結(jié)果保留π)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)圓周角定理(直徑所對的圓周角是直角)求解,即可求得答案.【詳解】∵直徑所對的圓周角等于直角,∴從直角三角板與圓弧的位置關(guān)系中,可判斷圓弧為半圓的是B.故選B.【點睛】本題考查了圓周角定理.此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、D【分析】根據(jù)一元二次方程有兩個不相等的實數(shù)根,得△即可求解.【詳解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有兩個不相等的實數(shù)根,∴△解得k>2.故選D.【點睛】本題考查一元二次方程△與參數(shù)的關(guān)系,列不等式是解題關(guān)鍵.3、B【詳解】由格點可得∠ABC所在的直角三角形的兩條直角邊為2,4,∴斜邊為.∴cos∠ABC=.故選B.4、B【解析】從物體正面看,看到的是一個橫放的矩形,且一條斜線將其分成一個直角梯形和一個直角三角形.故選B.5、B【分析】根據(jù)拋物線的開口方向、對稱軸、頂點坐標(biāo)和增減性,以及二次函數(shù)與一元二次方程的關(guān)系逐個進行判斷即可.【詳解】解:由拋物線開口向上,可知a>1,對稱軸偏在y軸的右側(cè),a、b異號,b<1,因此①不符合題意;由對稱軸為x=1,拋物線與x軸的一個交點為(3,1),可知與x軸另一個交點為(﹣1,1),代入得a﹣b+c=1,因此②符合題意;由圖象可知,當(dāng)x<﹣1或x>3時,圖象位于x軸的上方,即y>1.因此③符合題意;拋物線與y=﹣1一定有兩個交點,即一元二次方程ax2+bx+c+1=1(a≠1)有兩個不相等的實數(shù)根,因此④符合題意;綜上,正確的有3個,故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì)和二次函數(shù)同一元二次方程的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握二次函數(shù)的性質(zhì).6、B【分析】用黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】因為一共有10個球,其中黃球有4個,

所以從布袋里任意摸出1個球,摸到白球的概率為.故選:B.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.7、B【分析】根據(jù)圓周角定理解答即可.【詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選:B.【點睛】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關(guān)鍵.8、A【分析】由⊙O的直徑為15cm,O點與P點的距離為8cm,根據(jù)點與圓心的距離與半徑的大小關(guān)系,即可求得答案.【詳解】∵⊙O的直徑為15cm,∴⊙O的半徑為7.5cm,∵O點與P點的距離為8cm,∴點P在⊙O外.故選A.【點睛】此題考查了點與圓的位置關(guān)系.注意點到圓心的距離為d,則有:當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上,當(dāng)d<r時,點在圓內(nèi).9、B【分析】以O(shè)P為邊向下作等邊△POH,連接AH,根據(jù)等邊三角形的性質(zhì)通過“邊角邊”證明△HPA≌△OPM,則AH=OM,然后根據(jù)AH≤OH+AO即可得解.【詳解】解:如圖,以O(shè)P為邊向下作等邊△POH,連接AH,∵△POH,△PAM都是等邊三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值為11,則OM的最大值為11.故選B.【點睛】本題主要考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì)等,解此題的關(guān)鍵在于熟練掌握其知識點,難點在于作輔助線構(gòu)造等邊三角形.10、A【分析】根據(jù)有理數(shù)的定義判斷即可.【詳解】A、﹣2是有理數(shù),故本選項正確;B、是無理數(shù),故本選項錯誤;C、﹣1是無理數(shù),故本選項錯誤;D、π是無理數(shù),故本選項錯誤;故選:A.【點睛】本題考查有理數(shù)和無理數(shù)的定義,關(guān)鍵在于牢記定義.二、填空題(每小題3分,共24分)11、或或【分析】根據(jù)二次函數(shù)的性質(zhì)分兩種情形討論求解即可;【詳解】(1)當(dāng)時,恒成立(2)當(dāng)時,代入C(-1,1),得到,代入B(-3,1),得到,代入A(-4,2),得到,沒有交點,或故答案為:或或.【點睛】本題考查二次函數(shù)的應(yīng)用,二次函數(shù)的圖象上的點的特征等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.12、.【分析】直接提取公因式即可【詳解】解:.故答案為:13、相切6-π【詳解】∵正方形ABCD是正方形,則∠C=90°,∴D與⊙O的位置關(guān)系是相切.∵正方形的對角線相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=4,∴CE=DE=BE=2梯形OEDC的面積=(2+4)×2÷2=6,扇形OEC的面積==π,∴陰影部分的面積=6-π.14、22.5【解析】根據(jù)題意畫出圖形,構(gòu)造出△PCD∽△PAB,利用相似三角形的性質(zhì)解題.解:過P作PF⊥AB,交CD于E,交AB于F,如圖所示設(shè)河寬為x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依題意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的寬度為22.5米.15、【解析】根據(jù)弧長公式可得:=,故答案為.16、20【解析】當(dāng)AE⊥BC時,四邊形AEFD的周長最小,利用直角三角形的性質(zhì)解答即可.【詳解】當(dāng)AE⊥BC時,四邊形AEFD的周長最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四邊形AEFD周長的最小值為:14+6=20,故答案為:20.【點睛】本題考查平移的性質(zhì),解題的關(guān)鍵是確定出當(dāng)AE⊥BC時,四邊形AEFD的周長最?。?7、x≤1【解析】試題解析:二次函數(shù)的對稱軸為:隨增大而增大時,的取值范圍是故答案為18、1.6【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】解:根據(jù)題意知,小紅的身高為150-30=120(厘米),設(shè)小紅的影長為x厘米則,解得:x=160,∴小紅的影長為1.6米,故答案為1.6【點睛】此題主要考查了平行投影,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出的影長,體現(xiàn)了方程的思想.三、解答題(共66分)19、(2)k=-2;(2)作圖見解析;2.【分析】(2)把這兩個函數(shù)解析式聯(lián)立,化簡可得kx2+4x-4=0,又因y=的圖像與直線y=kx+4只有一個公共點,可得△=0,即可求得k值;(2)C2平移至C2處所掃過的面積等于平行四邊形C2C2AB的面積,直接求得即可.【詳解】Jie:(2)聯(lián)立得kx2+4x-4=0,又∵y=的圖像與直線y=kx+4只有一個公共點,∴42-4?k?(—4)=0,∴k=-2.(2)如圖:C2平移至C2處所掃過的面積為2.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題;平移的性質(zhì).20、(1)作圖見解析;(2)證明見解析.【分析】(1)作線段AB的垂直一部分線,交AB上方的圓弧上于點D,連接AD,BD,等腰三角形ABD即為所求作;(2)由等腰三角形的性質(zhì)可求出∠B=30゜,連接OD,利用三角形外角的性質(zhì)得∠DOB=60゜,再由三角形內(nèi)角和求得∠ODB=90゜,從而可證得結(jié)論.【詳解】(1)如圖所示;(2)∵△ABD是等腰三角形,且∠DAB=30°,∴∠DBA=30゜,連接OD,∵OA=OD∴∠ODA=∠OAD=30゜∴∠DOB=∠ODA+∠OAD=60゜在△ODB中,∠DOB+∠ODB+∠DBO=180゜∴∠ODB=180゜-∠DOB-∠DBO=90゜,即∴直線BD與⊙O相切.【點睛】本題考查的是切線的判定,掌握“連交點,證垂直”是解決這類問題的常用解題思路.21、(1)畫圖見解析;(2)畫圖見解析;(3)20【解析】(1)結(jié)合網(wǎng)格特點,連接OA并延長至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結(jié)合網(wǎng)格特點根據(jù)旋轉(zhuǎn)作圖的方法找到A2點,連接A2B1即可得;(3)根據(jù)網(wǎng)格特點可知四邊形AA1B1A2是正方形,求出邊長即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結(jié)合網(wǎng)格特點易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點睛】本題考查了作圖-位似變換,旋轉(zhuǎn)變換,能根據(jù)位似比、旋轉(zhuǎn)方向和旋轉(zhuǎn)角得到關(guān)鍵點的對應(yīng)點是作圖的關(guān)鍵.22、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據(jù)四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關(guān)系得出PD=PC時PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.【詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當(dāng)PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【點睛】此題是一道綜合題,考查圓的性質(zhì),垂徑定理,三角函數(shù),三角形全等的判定及性質(zhì),動點最大值等知識點.(1)中問題發(fā)現(xiàn)的結(jié)論應(yīng)用很主要,理解題意在(2)、(3)中應(yīng)用解題,(3)的PD+PC最大值的確定是難點,注意與所學(xué)知識的結(jié)合才能更好的解題.23、(1)列表見解析,P所有可能的坐標(biāo)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)【分析】(1)用列表法列舉出所有可能出現(xiàn)的情況,注意每一種情況出現(xiàn)的可能性是均等的,(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),由概率公式即可得出答案.【詳解】(1)由列表法列舉所有可能出現(xiàn)的情況:因此點P所有可能的坐標(biāo)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16種.(2)點P在以原點為圓心,5為半徑的圓上的結(jié)果有2個,即(3,4),(4,3),∴點P在以原點為圓心,5為半徑的圓上的概率為.【點睛】本題考查了列表法或樹狀圖法求等可能事件發(fā)生的概率,利用這種方法注意每一種情況出現(xiàn)的可能性是均等的.24、(1)50,360;(2).【解析】試題分析:(1)根據(jù)圖示,可由非常了解的人數(shù)和所占的百分比直接求解總?cè)藬?shù),然后根據(jù)求出不了解的百分比估計即可;(2)根據(jù)題意畫出樹狀圖,然后求出總可能和“一男一女”的可能,再根據(jù)概率的意義求解即可.試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調(diào)查的學(xué)生有(人)由餅圖可知:“不了解”的概率為,故1200名學(xué)生中“不了解”的人數(shù)為(人)(2)樹狀圖:由樹狀圖可知共有12種結(jié)果,抽到1男1女分別為共8種.∴考點:1、扇形統(tǒng)計圖,2、條形統(tǒng)計圖,3、概率25、(1);(2)存在,最大值為4,此時的坐標(biāo)為;(3)存在,或或或【分析】(1)先確定A(4,0),B(-1,0),再設(shè)交點式y(tǒng)=a(x+1)(x-4),然后把C點坐標(biāo)代入求出a即可;(2)作PE⊥x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論