版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.用配方法解一元二次方程,配方后的方程是()A. B. C. D.2.已知一次函數(shù)與反比例函數(shù)的圖象有2個公共點,則的取值范圍是()A. B. C.或 D.3.拋物線y=﹣3(x﹣1)2+3的頂點坐標是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)4.4月24日是中國航天日,1970年的這一天,我國自行設計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標志著中國從此進入了太空時代,它的運行軌道,距地球最近點439000米.將439000用科學記數(shù)法表示應為()A.0.439×106 B.4.39×106 C.4.39×105 D.139×1035.一件衣服225元,連續(xù)兩次降價x%后售價為144元,則x=()A.0.2 B.2 C.8 D.206.關于x的一元二次方程有兩個實數(shù)根,,則k的值()A.0或2 B.-2或2 C.-2 D.27.若點都是反比例函數(shù)圖像上的點,并且,則下列結(jié)論中正確的是()A. B.C.隨的增大而減小 D.兩點有可能在同一象限8.用配方法解一元二次方程x2﹣2x=5的過程中,配方正確的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.如圖,△ABC∽△ADE,則下列比例式正確的是()A. B. C. D.10.已知關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是()A.<2 B.<3 C.<2且≠0 D.<3且≠2二、填空題(每小題3分,共24分)11.如圖,是的直徑,點和點是上位于直徑兩側(cè)的點,連結(jié),,,,若的半徑是,,則的值是_____________.12.圓心角是60°且半徑為2的扇形面積是______13.連接三角形各邊中點所得的三角形面積與原三角形面積之比為:.14.動手操作:在矩形紙片ABCD中,AB=3,AD=5.如圖所示,折疊紙片,使點A落在BC邊上的A’處,折痕為PQ,當點A’在BC邊上移動時,折痕的端點P、Q也隨之移動.若限定點P、Q分別在AB、AD邊上移動,則點A’在BC邊上可移動的最大距離為.15.如圖,中,,,,是上一個動點,以為直徑的⊙交于,則線段長的最小值是_________.16.如圖,在的同側(cè),,點為的中點,若,則的最大值是_____.17.如圖,PA,PB分別切⊙O于點A,B.若∠P=100°,則∠ACB的大小為_____(度).18.在平面坐標系中,第1個正方形的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作第2個正方形,延長交軸于點;作第3個正方形,…按這樣的規(guī)律進行下去,第5個正方形的邊長為__________.三、解答題(共66分)19.(10分)如圖,△ABC中,∠BAC=120o,以BC為邊向外作等邊△BCD,把△ABD繞著D點按順時針方向旋轉(zhuǎn)60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度數(shù)和AD的長.20.(6分)如圖,AB和DE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m.(1)在圖中畫出此時DE在太陽光下的影子EF;(2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.21.(6分)如圖,在平面直角坐標系中,函數(shù)的圖象與直線交于點A(3,m).(1)求k、m的值;(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù)的圖象于點N.①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.22.(8分)在平面直角坐標系中(如圖),已知拋物線經(jīng)過點,與軸交于點,,拋物線的頂點為點,對稱軸與軸交于點.(1)求拋物線的表達式及點的坐標;(2)點是軸正半軸上的一點,如果,求點的坐標;(3)在(2)的條件下,點是位于軸左側(cè)拋物線上的一點,如果是以為直角邊的直角三角形,求點的坐標.23.(8分)國慶期間,某風景區(qū)推出兩種旅游觀光活動付費方式:若人數(shù)不超過20人,人均繳費500元;若人數(shù)超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?24.(8分)某種蔬菜的售價(元)與銷售月份之間的關系如圖所示,成本(元)與銷售月份之間的關系如圖所示.(圖的圖象是線段,圖的圖象是拋物線)(1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是多少元?(利潤=售價成本)(2)設每千克該蔬菜銷售利潤為,請列出與之間的函數(shù)關系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?(3)已知市場部銷售該種蔬菜4、5兩個月的總利潤為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克.4、5兩個月的銷售量分別是多少萬千克?25.(10分)如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線AB上一個動點,點Q是直線CD上一個動點.(1)求線段AB的長度:(2)過動點P作PF⊥OA于F,PE⊥OB于E,點P在移動過程中,線段EF的長度也在改變,請求出線段EF的最小值:(3)在坐標平面內(nèi)是否存在一點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標:若不存在,請說明理由.26.(10分)如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)()圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.(1)根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?(2)求一次函數(shù)解析式及m的值;(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】先移項變形為,再將兩邊同時加4,即可把左邊配成完全平方式,進而得到答案.【詳解】∵∴∴∴故選C.【點睛】本題考查配方法解一元二次方程,熟練掌握配方法的解法步驟是解題的關鍵.2、C【分析】將兩個解析式聯(lián)立整理成關于x的一元二次方程,根據(jù)判別式與根的關系進行解題即可.【詳解】將代入到中,得,整理得∵一次函數(shù)與反比例函數(shù)的圖象有2個公共點∴方程有兩個不相等的實數(shù)根所以解得或故選C.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)圖像交點問題,能用函數(shù)的思想思考問題是解題的關鍵.3、D【分析】直接根據(jù)頂點式的特點求頂點坐標.【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標為(1,3).故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標為(h,k).4、C【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將439000用科學記數(shù)法表示為4.39×1.
故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、D【分析】根據(jù)該衣服的原價及經(jīng)過兩次降價后的價格,即可得出關于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:依題意,得:225(1﹣x%)2=144,解得:x1=20,x2=180(不合題意,舍去).故選:D.【點睛】本題考查一元二次方程的應用,根據(jù)題意得出關于x的一元二次方程是解題關鍵.6、D【分析】將化簡可得,,利用韋達定理,,解得,k=±2,由題意可知△>0,可得k=2符合題意.【詳解】解:由韋達定理,得:=k-1,,由,得:,即,所以,,化簡,得:,解得:k=±2,因為關于x的一元二次方程有兩個實數(shù)根,所以,△==〉0,k=-2不符合,所以,k=2故選D.【點睛】本題考查了一元二次方程根與系數(shù)的關系,熟練掌握并靈活運用是解題的關鍵.7、A【分析】根據(jù)反比例函數(shù)的圖象及性質(zhì)和比例系數(shù)的關系,即可判斷C,然后根據(jù)即可判斷兩點所在的象限,從而判斷D,然后判斷出兩點所在的象限即可判斷B和A.【詳解】解:∵中,-6<0,∴反比例函數(shù)的圖象在二、四象限,在每一象限,y隨x的增大而增大,故C錯誤;∵∴點在第四象限,點在第二象限,故D錯誤;∴,故B錯誤,A正確.故選A.【點睛】此題考查的是反比例函數(shù)的圖象及性質(zhì),掌握反比例函數(shù)的圖象及性質(zhì)與比例系數(shù)的關系是解決此題的關鍵.8、B【分析】在方程左右兩邊同時加上一次項系數(shù)一半的平方即可.【詳解】解:方程兩邊同時加上一次項系數(shù)一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故選:B.【點睛】本題考查了配方法,解題的關鍵是注意:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).9、D【解析】∵△ABC∽△ADE,∴,故選D.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形的對應邊成比例這一性質(zhì)是解答此題的關鍵.10、D【分析】根據(jù)方程有兩個不相等的實數(shù)根結(jié)合二次項系數(shù)非0,即可得出關于k的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】∵關于x的一元二次方程(k?2)x2?2x+1=0有兩個不相等的實數(shù)根,∴,解得:k<3且k≠2.故選D.【點睛】本題考查根的判別式,解題突破口是得出關于k的一元一次不等式組.二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【詳解】解:∵是的直徑,∴∠ADB=90°∴∠ACD=∠ABD∵的半徑是,,∴故答案為:【點睛】本題考查的是銳角三角函數(shù)值.12、【解析】由扇形面積公式得:S=故答案是:.13、1:1【分析】證出DE、EF、DF是△ABC的中位線,由三角形中位線定理得出,證出△DEF∽△CBA,由相似三角形的面積比等于相似比的平方即可得出結(jié)果.【詳解】解:如圖所示:∵D、E、F分別AB、AC、BC的中點,∴DE、EF、DF是△ABC的中位線,∴DE=BC,EF=AB,DF=AC,∴∴△DEF∽△CBA,∴△DEF的面積:△CBA的面積=()2=.故答案為1:1.考點:三角形中位線定理.14、2【解析】解:當點P與B重合時,BA′取最大值是3,當點Q與D重合時(如圖),由勾股定理得A′C=4,此時BA′取最小值為1.則點A′在BC邊上移動的最大距離為3-1=2.15、【分析】連接AE,可得∠AED=∠BEA=90°,從而知點E在以AB為直徑的⊙Q上,繼而知點Q、E、C三點共線時CE最小,根據(jù)勾股定理求得QC的長,即可得線段CE的最小值.【詳解】解:如圖,連接AE,則∠AED=∠BEA=90°(直徑所對的圓周角等于90°),
∴點E在以AB為直徑的⊙Q上,
∵AB=4,
∴QA=QB=2,
當點Q、E、C三點共線時,QE+CE=CQ(最短),
而QE長度不變?yōu)?,故此時CE最小,
∵AC=5,
,
∴,
故答案為:.【點睛】本題考查了圓周角定理和勾股定理的綜合應用,解決本題的關鍵是確定E點運動的軌跡,從而把問題轉(zhuǎn)化為圓外一點到圓上一點的最短距離問題.16、14【分析】如圖,作點A關于CM的對稱點A′,點B關于DM的對稱點B′,證明△A′MB′為等邊三角形,即可解決問題.【詳解】解:如圖,作點關于的對稱點,點關于的對稱點.,,,,,為等邊三角形,的最大值為,故答案為.【點睛】本題考查等邊三角形的判定和性質(zhì),兩點之間線段最短,解題的關鍵是學會添加常用輔助線,學會利用兩點之間線段最短解決最值問題17、1【分析】首先連接OA,OB,由PA、PB分別切⊙O于點A、B,根據(jù)切線的性質(zhì)可得:OA⊥PA,OB⊥PB,然后由四邊形的內(nèi)角和等于360°,求得∠AOB的度數(shù),又由圓周角定理,即可求得答案.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣100°﹣90°=80°,∴.故答案為:1.【點睛】此題考查了切線的性質(zhì)以及圓周角定理.解題的關鍵是掌握輔助線的作法,熟練掌握切線的性質(zhì).18、【分析】先求出第一個正方形ABCD的邊長,再利用△OAD∽△BA1A求出第一個正方形的邊長,再求第三個正方形邊長,得出規(guī)律可求出第5個正方形的邊長.【詳解】∵點的坐標為,點的坐標為∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出規(guī)律,第n個正方形的邊長為∴第5個正方形的邊長為.【點睛】本題考查正方形的性質(zhì),相似三角形的判定和性質(zhì),勾股定理的運用,此題的關鍵是根據(jù)計算的結(jié)果得出規(guī)律.三、解答題(共66分)19、AD=10,∠BAD=60°.【解析】先證明△ADE是等邊三角形,再推出A,C,E共線;由于∠ADE=60°,根據(jù)旋轉(zhuǎn)得出AB=CE=6,求出AE即可.【詳解】解:由旋轉(zhuǎn)可知:△ABD≌△ECD∴AB=EC=6,∠BAD=∠EAD=ED∵∠ADE=60°∴△ADE是等邊三角形∴AE=AD∠E=∠DAE=60°∴∠BAD=60°∵∠BAC=120°∴∠DAC=60°=∠DAE∴C在AE上∴AD=AC+CE=4+6=10.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),解題的關鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì).20、(1)詳見解析;(2)10m【分析】(1)連接AC,過點D作DF∥AC,交直線BC于點F,線段EF即為DE的投影;(2)易證△ABC∽△DEF,再根據(jù)相似三角形的對應邊成比例進行解答即可.【詳解】(1)連接AC,過點D作DF∥AC,交直線BC于點F,線段EF即為DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【點睛】本題主要考查相似三角形的應用,解此題的關鍵在于熟練掌握相似三角形的判定與性質(zhì).21、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點代入y=x-2中即可求出m的值,然后將A的坐標代入反比例函數(shù)中即可求出k的值.(2)①當n=1時,分別求出M、N兩點的坐標即可求出PM與PN的關系;②由題意可知:P的坐標為(n,n),由于PN≥PM,從而可知PN≥2,根據(jù)圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當n=1時,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),點P在直線y=x上,過點P作平行于x軸的直線,交直線y=x-2于點M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3點睛:本題考查反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是求出反比例函數(shù)與一次函數(shù)的解析式,本題屬于基礎題型.22、(1),;(2);(3)或【分析】(1)將點A、B代入拋物線,即可求出拋物線解析式,再化為頂點式即可;
(2)如圖1,連接AB,交對稱軸于點N,則N(-,-2),利用相等角的正切值相等即可求出EH的長,OE的長,可寫出點E的坐標;
(3)分∠EAP=90°和∠AEP=90°兩種情況討論,通過相似的性質(zhì),用含t的代數(shù)式表示出點P的坐標,可分別求出點P的坐標.【詳解】解:(1)(1)將點A(-3,-2)、B(0,-2)代入拋物線,
得,,
解得,a=,c=-2,
∴y=x2+4x-2
=(x+)2-5,
∴拋物線解析式為y=x2+4x-2,頂點C的坐標為(-,-5);(2)如圖1,連接AB,交對稱軸于點N,則N(-,-2),,則,過作,,則,∵OH=3,∴OE=1,∴(3)①如圖2,當∠EAP=90°時,
∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,
∴∠HEA=∠MAP,
又∠AHE=∠PMA=90°,,則,設,則將代入得(舍),,∴②如圖3,當∠AEP=90°時,∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,
∴∠AEG=∠EPN,
又∵∠N=∠G=90°,∴,則設,則將代入得,(舍),∴綜上所述:,【點睛】此題考查了待定系數(shù)法求解析式,銳角三角函數(shù),直角三角形的存在性等,解題關鍵是能夠作出適當?shù)妮o助線構(gòu)造相似三角形,并注意分類討論思想的運用.23、30【分析】設該單位一共組織了x位職工參加旅游觀光活動,求出當人數(shù)為20時的總費用及人均收費10元時的人數(shù),即可得出20<x<1,再利用總費用=人數(shù)×人均收費,即可得出關于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:設該單位一共組織了x位職工參加旅游觀光活動,∵500×20=10000(元),10000<12000,(500﹣10)=15(人),12000÷10=34(人),34不為整數(shù),∴20<x<20+15,即20<x<1.依題意,得:x[500﹣10(x﹣20)]=12000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(不合題意,舍去).答:該單位一共組織了30位職工參加旅游觀光活動.【點睛】本題考查了一元二次方程的應用,正確理解題意,找準題中等量關系列出方程是解題的關鍵.24、(1)6月份出售這種蔬菜每千克的利潤是2元;(2)P=,5月份出售這種蔬菜,每千克的收益最大為元;(3)4月份的銷售量為40000千克,5月份的銷售量為60000千克.【分析】(1)找出x=6時,y1、y2的值,根據(jù)利潤=售價-成本進行計算即可;(2)利用待定系數(shù)法分別求出y1、y2關于x的函數(shù)關系式,然后根據(jù)P=y1-y2得到關于x的函數(shù)關系式,然后利用二次根式的性質(zhì)進行求解即可;(3)求出當x=4時,P的值,設4月份的銷售量為t千克,則5月份的銷售是為(t+20000)千克,根據(jù)總利潤=每千克利潤×銷售數(shù)量,即可得出關于t的方程,解方程即可求得答案.【詳解】(1)當x=6時,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售這種蔬菜每千克的利潤是2元;(2)設y1=mx+n,y2=a(x-6)2+1,將(3,5)、(6,3)分別代入y1=mx+n,得,解得:,∴;將(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=,∴,∴P==,∵,∴當x=5時,P取最大值,最大值為,即5月份出售這種蔬菜,每千克的收益最大,最大值為元;(3)當x=4時,P==2,設4月份的銷售量為t千克,則5月份的銷售量為(t+20000)千克,根據(jù)題意得:,解得:t=40000,∴t+20000=60000,答:4月份的銷售量為40000千克,5月份的銷售量為60000千克.【點睛】本題考查了一次函數(shù)的應用,二次函數(shù)的應用,涉及了待定系數(shù)法,二次函數(shù)的性質(zhì)等知識,綜合性較強,弄清題意,讀懂圖象,靈活運用相關知識是解題的關鍵.25、(1)1;(2);(3)存在,所求點M的坐標為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B兩點的坐標,在Rt△AOB中利用勾股定理求出AB即可.(2)證明四邊形PEOF是矩形,推出EF=OP,根據(jù)垂線段最短解決問題即可.(3)分兩種情況進行討論:①當點P與點B重合時,先求出BM的解析式為y=x+8,設M(x,x+8),再根據(jù)BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐標;②當點P與點A重合時,先求出AM的解析式為y=x﹣,設M(x,x﹣),再根據(jù)AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐標.【詳解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如圖,連接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四邊形PEOF是矩形,∴EF=OP,根據(jù)垂線段最短可知當OP⊥AB時,OP的值最小,此時OP==,∴EF的最小值為.(3)在坐標平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電工合金熔煉及熱變形工崗前工作意識考核試卷含答案
- 化工洗滌工操作評估水平考核試卷含答案
- 2025年厚、薄膜混合集成電路及消費類電路合作協(xié)議書
- 隔離層制備工安全應急測試考核試卷含答案
- 煙葉制絲設備操作工安全理論競賽考核試卷含答案
- 2025年科技中介服務合作協(xié)議書
- 2025年醫(yī)用檢驗與生化分析儀器項目發(fā)展計劃
- 2025年冷鏈裝備項目發(fā)展計劃
- 2025年滌綸高彈絲合作協(xié)議書
- 2026年烹飪計時器項目評估報告
- 新零售模式下人才培養(yǎng)方案
- 上海市徐匯區(qū)2026屆初三一模化學試題(含答案)
- 電力工程課程設計-某機床廠變電所設計
- 馬鞍山經(jīng)濟技術(shù)開發(fā)區(qū)建設投資有限公司馬鞍山城鎮(zhèn)南部污水處理廠擴建工程項目環(huán)境影響報告書
- Unit 2 Reading and Thinking教學課件(英語選擇性必修第一冊人教版)
- 兒童常用補液
- GB/T 615-2006化學試劑沸程測定通用方法
- GB/T 22085.2-2008電子束及激光焊接接頭缺欠質(zhì)量分級指南第2部分:鋁及鋁合金
- GB/T 19939-2005光伏系統(tǒng)并網(wǎng)技術(shù)要求
- GB/T 18853-2015液壓傳動過濾器評定濾芯過濾性能的多次通過方法
- 工業(yè)管道施工與驗收規(guī)范
評論
0/150
提交評論