天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題含解析_第1頁
天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題含解析_第2頁
天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題含解析_第3頁
天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題含解析_第4頁
天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津市河北區(qū)重點達標名校2024屆中考數(shù)學全真模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤2.不等式﹣x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<43.一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標可以為()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)4.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.55.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.36.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣7.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)8.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚9.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a410.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°二、填空題(共7小題,每小題3分,滿分21分)11.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.12.如圖,的頂點落在兩條平行線上,點D、E、F分別是三邊中點,平行線間的距離是8,,移動點A,當時,EF的長度是______.13.一個圓錐的三視圖如圖,則此圓錐的表面積為______.14.已知二次函數(shù)的圖象如圖所示,若方程有兩個不相等的實數(shù)根,則的取值范圍是_____________.15.計算:-=________.16.若正多邊形的一個外角是45°,則該正多邊形的邊數(shù)是_________.17.因式分解:=三、解答題(共7小題,滿分69分)18.(10分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.19.(5分)如圖所示,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.求線段MN的長.若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.20.(8分)李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?21.(10分)如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.22.(10分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)23.(12分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關(guān)系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應(yīng)定為多少元?24.(14分)解不等式,并把解集在數(shù)軸上表示出來.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)實數(shù)的運算法則即可一一判斷求解.【詳解】①有理數(shù)的0次冪,當a=0時,a0=0;②為同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,正確;③中2–2=,原式錯誤;④為有理數(shù)的混合運算,正確;⑤為合并同類項,正確.故選D.2、A【解析】

根據(jù)一元一次不等式的解法,移項,合并同類項,系數(shù)化為1即可得解.【詳解】移項得:?x>3?1,合并同類項得:?x>2,系數(shù)化為1得:x<-4.故選A.【點睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握一元一次不等式的解法.3、C【解析】【分析】根據(jù)函數(shù)圖象的性質(zhì)判斷系數(shù)k>0,則該函數(shù)圖象經(jīng)過第一、三象限,由函數(shù)圖象與y軸交于負半軸,則該函數(shù)圖象經(jīng)過第一、三、四象限,由此得到結(jié)論.【詳解】∵一次函數(shù)y=kx﹣1的圖象的y的值隨x值的增大而增大,∴k>0,A、把點(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合題意;B、把點(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合題意;C、把點(2,2)代入y=kx﹣1得到:k=>0,符合題意;D、把點(5,﹣1)代入y=kx﹣1得到:k=0,不符合題意,故選C.【點睛】考查了一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質(zhì),根據(jù)題意求得k>0是解題的關(guān)鍵.4、A【解析】

根據(jù)直線外一點和直線上點的連線中,垂線段最短的性質(zhì),可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質(zhì),解題關(guān)鍵是利用垂線段的性質(zhì).5、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無法證明,故錯誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強,對學生要求較高.6、C【解析】

由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關(guān)于反比例函數(shù)的題目,需結(jié)合反比例函數(shù)中系數(shù)k的幾何意義解答;7、D【解析】

根據(jù)題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,

點P1(1,1),點P2(3,-1),點P3(5,1),

∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,

即P2018的坐標為(4035,-1),

故選:D.【點睛】本題考查了點的坐標變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點的變化規(guī)律,求出相應(yīng)的點的坐標.8、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.9、D【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.10、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12、1【解析】

過點D作于點H,根等腰三角形的性質(zhì)求得BD的長度,繼而得到,結(jié)合三角形中位線定理求得EF的長度即可.【詳解】解:如圖,過點D作于點H,

過點D作于點H,,

又平行線間的距離是8,點D是AB的中點,

,

在直角中,由勾股定理知,.

點D是AB的中點,

又點E、F分別是AC、BC的中點,

是的中位線,

故答案是:1.【點睛】考查了三角形中位線定理和平行線的性質(zhì),解題的關(guān)鍵是根據(jù)平行線的性質(zhì)求得DH的長度.13、55πcm2【解析】

由正視圖和左視圖判斷出圓錐的半徑和母線長,然后根據(jù)圓錐的表面積公式求解即可.【詳解】由三視圖可知,半徑為5cm,圓錐母線長為6cm,

∴表面積=π×5×6+π×52=55πcm2,故答案為:55πcm2.【點睛】本題考查了圓錐的計算,由該三視圖中的數(shù)據(jù)確定圓錐的底面直徑和母線長是解本題的關(guān)鍵,本題體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.如果圓錐的底面半徑為r,母線長為l,那么圓錐的表面積=πrl+πr2.14、【解析】分析:先移項,整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點坐標為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個不相等的實數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點睛:本題主要考查了拋物線與x軸的交點問題,以及數(shù)形結(jié)合法;二次函數(shù)中當b2-4ac>0時,二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點.15、2【解析】試題解析:原式故答案為16、1;【解析】

根據(jù)多邊形外角和是360度,正多邊形的各個內(nèi)角相等,各個外角也相等,直接用360°÷45°可求得邊數(shù).【詳解】∵多邊形外角和是360度,正多邊形的一個外角是45°,∴360°÷45°=1即該正多邊形的邊數(shù)是1.【點睛】本題主要考查了多邊形外角和是360度和正多邊形的性質(zhì)(正多邊形的各個內(nèi)角相等,各個外角也相等).17、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進行二次分解,注意分解要徹底.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)【解析】

(1)根據(jù)矩形的性質(zhì)可得AB=CD,∠C=∠A=90°,再根據(jù)折疊的性質(zhì)可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;

(2)設(shè)AF=x,則BF=DF=8-x,根據(jù)勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設(shè)AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質(zhì),全等三角形的判定與性質(zhì),矩形的性質(zhì),勾股定理,翻折前后對應(yīng)邊相等,對應(yīng)角相等,利用勾股定理列出方程是解題的關(guān)鍵.19、(1)7cm(2)若C為線段AB上任意一點,且滿足AC+CB=a(cm),其他條件不變,則MN=a(cm);理由詳見解析(3)b(cm)【解析】

(1)據(jù)“點M、N分別是AC、BC的中點”,先求出MC、CN的長度,再利用MN=CM+CN即可求出MN的長度即可.(2)據(jù)題意畫出圖形即可得出答案.(3)據(jù)題意畫出圖形即可得出答案.【詳解】(1)如圖∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∴MN=AC+BC=(AC+BC)=AB=7cm.答:MN的長為7cm.(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,則MN=cm,理由是:∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC+CB=acm,∴MN=AC+BC=(AC+BC)=cm.(3)解:如圖,∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC-CB=bcm,∴MN=AC-BC=(AC-BC)=cm.考點:兩點間的距離.20、(1);(2)-1【解析】

(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設(shè)“□”為a,∵x、y是一對相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【點睛】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關(guān)于a的方程是解(2)的關(guān)鍵.21、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標為或或或.【解析】分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關(guān)系式,再根據(jù)拋物線的對稱軸方程可得a和b的關(guān)系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;(2)設(shè)直線BC與對稱軸x=-1的交點為M,此時MA+MC的值最?。褁=-1代入直線y=x+3得y的值,即可求出點M坐標;(3)設(shè)P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.詳解:(1)依題意得:,解得:,∴拋物線的解析式為.∵對稱軸為,且拋物線經(jīng)過,∴把、分別代入直線,得,解之得:,∴直線的解析式為.(2)直線與對稱軸的交點為,則此時的值最小,把代入直線得,∴.即當點到點的距離與到點的距離之和最小時的坐標為.(注:本題只求坐標沒說要求證明為何此時的值最小,所以答案未證明的值最小的原因).(3)設(shè),又,,∴,,,①若點為直角頂點,則,即:解得:,②若點為直角頂點,則,即:解得:,③若點為直角頂點,則,即:解得:,.綜上所述的坐標為或或或.點睛:本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對稱性質(zhì)確定線段的最小長度、難度不是很大,是一道不錯的中考壓軸題.22、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應(yīng)的拋物線分別為;;,偶數(shù).【解析】

(1)設(shè)正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,

(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,

(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設(shè)正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論