新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(原卷版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(原卷版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(原卷版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(原卷版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第08講 函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第08講函數(shù)的基本性質(zhì)Ⅱ-奇偶性、周期性和對(duì)稱(chēng)性(精講)題型目錄一覽①函數(shù)的奇偶性②函數(shù)奇偶性的應(yīng)用③函數(shù)的周期性④函數(shù)的對(duì)稱(chēng)性⑤函數(shù)性質(zhì)的綜合應(yīng)用一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理1.函數(shù)的奇偶性奇偶性定義圖象特點(diǎn)偶函數(shù)如果對(duì)于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個(gè)SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0就叫做偶函數(shù)關(guān)于SKIPIF1<0軸對(duì)稱(chēng)奇函數(shù)如果對(duì)于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個(gè)SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0就叫做奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)注意:由函數(shù)奇偶性的定義可知,函數(shù)具有奇偶性的一個(gè)前提條件是:對(duì)于定義域內(nèi)的任意一個(gè)SKIPIF1<0,SKIPIF1<0也在定義域內(nèi)(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng)).2.函數(shù)的對(duì)稱(chēng)性(1)若函數(shù)SKIPIF1<0為偶函數(shù),則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng).(2)若函數(shù)SKIPIF1<0為奇函數(shù),則函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng).(3)若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng).(4)若SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng).3.函數(shù)的周期性(1)周期函數(shù):對(duì)于函數(shù)SKIPIF1<0,如果存在一個(gè)非零常數(shù)SKIPIF1<0,使得當(dāng)SKIPIF1<0取定義域內(nèi)的任何值時(shí),都有SKIPIF1<0,那么就稱(chēng)函數(shù)SKIPIF1<0為周期函數(shù),稱(chēng)SKIPIF1<0為這個(gè)函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)SKIPIF1<0的所有周期中存在一個(gè)最小的正數(shù),那么稱(chēng)這個(gè)最小整數(shù)叫做SKIPIF1<0的最小正周期.【常用結(jié)論】1.奇偶性技巧(1)若奇函數(shù)SKIPIF1<0在SKIPIF1<0處有意義,則有SKIPIF1<0;(2)對(duì)于運(yùn)算函數(shù)有如下結(jié)論:奇SKIPIF1<0奇=奇;偶SKIPIF1<0偶=偶;奇SKIPIF1<0偶=非奇非偶;奇SKIPIF1<0奇=偶;奇SKIPIF1<0偶=奇;偶SKIPIF1<0偶=偶.(3)常見(jiàn)奇偶性函數(shù)模型奇函數(shù):=1\*GB3①函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0=4\*GB3④函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.注意:關(guān)于=1\*GB3①式,可以寫(xiě)成函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.偶函數(shù):=1\*GB3①函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0類(lèi)型的一切函數(shù).2.周期性技巧SKIPIF1<03.函數(shù)的的對(duì)稱(chēng)性與周期性的關(guān)系(1)若函數(shù)SKIPIF1<0有兩條對(duì)稱(chēng)軸SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(2)若函數(shù)SKIPIF1<0的圖象有兩個(gè)對(duì)稱(chēng)中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(3)若函數(shù)SKIPIF1<0有一條對(duì)稱(chēng)軸SKIPIF1<0和一個(gè)對(duì)稱(chēng)中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0.4.對(duì)稱(chēng)性技巧(1)若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0.(2)若函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0.(3)函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng),函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱(chēng).二、題型分類(lèi)精講二、題型分類(lèi)精講真題刷刷刷真題刷刷刷一、單選題1.下列函數(shù)中是增函數(shù)的為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.設(shè)SKIPIF1<0是定義域?yàn)镽的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.已知函數(shù)SKIPIF1<0,則圖象為如圖的函數(shù)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.如圖是下列四個(gè)函數(shù)中的某個(gè)函數(shù)在區(qū)間SKIPIF1<0的大致圖像,則該函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.18.已知函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0.若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱(chēng),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題10.已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題11.寫(xiě)出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0_______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;③SKIPIF1<0是奇函數(shù).四、雙空題12.若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.題型一函數(shù)的奇偶性策略方法判斷函數(shù)奇偶性的方法(1)定義法:(2)圖象法:(3)性質(zhì)法:在公共定義域內(nèi)有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.【典例1】判斷下列函數(shù)的奇偶性:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0的奇偶性是()A.是奇函數(shù),不是偶函數(shù)B.是偶函數(shù),不是奇函數(shù)C.既是奇函數(shù),也是偶函數(shù)D.非奇非偶函數(shù)2.已知奇函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.若函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0(

)A.2 B.1 C.0 D.SKIPIF1<04.函數(shù)SKIPIF1<0的部分圖象大致為(

)A. B.C. D.二、填空題5.函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0___________.6.SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.7.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的解集是__________.三、解答題8.已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0解析式;(2)判斷函數(shù)SKIPIF1<0的奇偶性并加以證明9.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的值;(2)令SKIPIF1<0,求證:SKIPIF1<0為奇函數(shù);(3)若銳角SKIPIF1<0滿(mǎn)足SKIPIF1<0,求SKIPIF1<0的取值范圍.題型二函數(shù)奇偶性的應(yīng)用策略方法已知函數(shù)奇偶性可以解決的三個(gè)問(wèn)題【典例1】若函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.7【典例2】若函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0、SKIPIF1<0的值是(

)A.SKIPIF1<0 B.SKIPIF1<0不能確定,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0不能確定 D.SKIPIF1<0【典例3】偶函數(shù)SKIPIF1<0滿(mǎn)足:SKIPIF1<0,且在區(qū)間SKIPIF1<0與SKIPIF1<0上分別遞減和遞增,使SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0一、單選題1.若函數(shù)SKIPIF1<0為奇函數(shù),則實(shí)數(shù)SKIPIF1<0的值為(

)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<02.已知函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知函數(shù)SKIPIF1<0為SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0+1 D.SKIPIF1<04.定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題7.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是偶函數(shù),在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),且SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.已知函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),且對(duì)SKIPIF1<0,SKIPIF1<0恒成立,則(

)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題9.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù),SKIPIF1<0)是奇函數(shù),則實(shí)數(shù)SKIPIF1<0的值為_(kāi)_____.10.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則不等式SKIPIF1<0的解集為_(kāi)_____.11.定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,滿(mǎn)足SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),若SKIPIF1<0,則SKIPIF1<0__________.12.)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若SKIPIF1<0為奇函數(shù),且SKIPIF1<0,則SKIPIF1<0_________.題型三函數(shù)的周期性策略方法函數(shù)周期性的判斷與應(yīng)用【典例1】若函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0可以是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】若定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】已知定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0滿(mǎn)足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0是定義在R上奇函數(shù),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.2 D.12.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0為奇函數(shù),則SKIPIF1<0(

)A.0 B.1 C.2 D.33.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的圖像關(guān)于y軸對(duì)稱(chēng),且周期為3,又SKIPIF1<0,則SKIPIF1<0的值是(

)A.2023 B.2022 C.SKIPIF1<0 D.14.已知函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.已知偶函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,下列說(shuō)法正確的是(

)A.函數(shù)SKIPIF1<0是以2為周期的周期函數(shù)B.函數(shù)SKIPIF1<0是以4為周期的周期函數(shù)C.函數(shù)SKIPIF1<0為偶函數(shù)D.函數(shù)SKIPIF1<0為偶函數(shù)三、填空題7.SKIPIF1<0是以2為周期的函數(shù),若SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0________.8.若定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0________.9.已知定義在實(shí)數(shù)集SKIPIF1<0上的函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_________.四、解答題10.設(shè)SKIPIF1<0是定義在R上的偶函數(shù),其圖象關(guān)于直線SKIPIF1<0對(duì)稱(chēng),對(duì)任意SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0.(1)求fSKIPIF1<0;(2)證明SKIPIF1<0是周期函數(shù);(3)記SKIPIF1<0SKIPIF1<0,求SKIPIF1<0.題型四函數(shù)的對(duì)稱(chēng)性策略方法函數(shù)圖象的對(duì)稱(chēng)性的判斷與應(yīng)用【典例1】已知二次函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),函數(shù)SKIPIF1<0是偶函數(shù),則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.下列函數(shù)的圖象中,既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.若SKIPIF1<0的偶函數(shù),其定義域?yàn)镾KIPIF1<0,且在SKIPIF1<0上是減函數(shù),則SKIPIF1<0與SKIPIF1<0得大小關(guān)系是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定3.定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0為奇函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2022 D.2023二、多選題4.已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的有(

)A.SKIPIF1<0的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng) B.SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱(chēng)C.SKIPIF1<0的最大值為1 D.SKIPIF1<0在定義域上單調(diào)遞減5.設(shè)函數(shù)f(x)的定義域?yàn)镽,且函數(shù)SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱(chēng),函數(shù)SKIPIF1<0的圖像關(guān)于點(diǎn)(3,0)對(duì)稱(chēng),則下列說(shuō)法正確的是(

)A.4是f(x)的周期 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題6.定義在R上的非常數(shù)函數(shù)SKIPIF1<0滿(mǎn)足:SKIPIF1<0,且SKIPIF1<0.請(qǐng)寫(xiě)出符合條件的一個(gè)函數(shù)的解析式SKIPIF1<0______.7.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對(duì)稱(chēng),則SKIPIF1<0_________.8.已知二次函數(shù)SKIPIF1<0(a,b為常數(shù))滿(mǎn)足SKIPIF1<0,且方程SKIPIF1<0有兩等根,SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)_________.四、解答題9.我們知道,函數(shù)SKIPIF1<0的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng)圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0成中心對(duì)稱(chēng)圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù).(1)求函數(shù)SKIPIF1<0圖象的對(duì)稱(chēng)中心;(2)類(lèi)比上述推廣結(jié)論,寫(xiě)出“函數(shù)SKIPIF1<0的圖象關(guān)于y軸成軸對(duì)稱(chēng)圖形的充要條件是函數(shù)SKIPIF1<0為偶函數(shù)”的一個(gè)推廣結(jié)論.題型五函數(shù)性質(zhì)的綜合應(yīng)用【典例1】若SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿(mǎn)足SKIPIF1<0為偶函數(shù),SKIPIF1<0的圖象關(guān)于SKIPIF1<0成中心對(duì)稱(chēng),則下列說(shuō)法正確的個(gè)數(shù)是()①SKIPIF1<0的一個(gè)周期為4②SKIPIF1<0

③SKIPIF1<0圖象的一條對(duì)稱(chēng)軸為SKIPIF1<0④SKIPIF1<0A.1 B.2 C.3 D.4【題型訓(xùn)練】一、單選題1.已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.5055C.SKIPIF1<0 D.10112.定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0為偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.函數(shù)SKIPIF1<0的圖像大致為(

)A.B.C.D.4.定義在SKIPIF1<0上函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論