版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第19講三角恒等變換(精講)題型目錄一覽①公式的直接應(yīng)用②輔助角公式的應(yīng)用③三角函數(shù)式的化簡(jiǎn)④給值求值問(wèn)題⑤給值求角問(wèn)題一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、兩角和與差的正余弦與正切①SKIPIF1<0; ②SKIPIF1<0;③SKIPIF1<0; 二、二倍角公式①SKIPIF1<0;②SKIPIF1<0; ③SKIPIF1<0;三、降冪公式SKIPIF1<0四、輔助角公式SKIPIF1<0(其中SKIPIF1<0).【常用結(jié)論】拆分角的變形:①SKIPIF1<0;SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.二、題型分類精講二、題型分類精講題型一公式的直接應(yīng)用策略方法應(yīng)用公式化簡(jiǎn)求值的策略(1)首先要記住公式的結(jié)構(gòu)特征和符號(hào)變化規(guī)律.例如兩角差的余弦公式可簡(jiǎn)化為“同名相乘,符號(hào)相反”.(2)注意與同角三角函數(shù)基本關(guān)系、誘導(dǎo)公式的綜合應(yīng)用.(3)注意配方法、因式分解和整體代換思想的應(yīng)用.【典例1】SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用誘導(dǎo)公式及兩角和的正弦公式求解.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B.【典例2】下列各式中,值為SKIPIF1<0的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用和差角公式、二倍角公式化簡(jiǎn)各選項(xiàng),計(jì)算判斷作答.【詳解】對(duì)于A,SKIPIF1<0,A不符合;對(duì)于B,SKIPIF1<0,B不符合;對(duì)于C,SKIPIF1<0,C符合;對(duì)于D,SKIPIF1<0,D不符合.故選:C【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專題練習(xí))SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)誘導(dǎo)公式以及兩角和與差的余弦公式即可求解.【詳解】SKIPIF1<0;SKIPIF1<0;SKIPIF1<0原式SKIPIF1<0SKIPIF1<0.故選:C2.(山西省太原市2022屆高三第一次模擬數(shù)學(xué)試題)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用三角函數(shù)和差公式即可.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;故選:D.3.(四川省成都市玉林中學(xué)2023屆高三適應(yīng)性考試數(shù)學(xué)試題)設(shè)SKIPIF1<0,則SKIPIF1<0等于(
)A.-2 B.2 C.-4 D.4【答案】C【分析】先用兩角差的正切公式可求出SKIPIF1<0的值,再用兩角和的正切公式即可求解【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故選:C.4.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知角SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由SKIPIF1<0及SKIPIF1<0的范圍求出SKIPIF1<0,再根據(jù)二倍角的余弦公式可求出SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:D.5.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0為銳角,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)二倍角的余弦公式與同角三角函數(shù)的關(guān)系化簡(jiǎn)得出只關(guān)于SKIPIF1<0的式子,即可解得答案.【詳解】SKIPIF1<0為銳角,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:B.6.(2023·廣東深圳·??级#┮阎猄KIPIF1<0,則SKIPIF1<0的值是(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用二倍角公式和商公式即可得出答案.【詳解】由SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D二、填空題7.(2023·全國(guó)·高三專題練習(xí))計(jì)算:SKIPIF1<0______.【答案】SKIPIF1<0【分析】根據(jù)兩角差的余弦公式計(jì)算化簡(jiǎn)可得原式等于SKIPIF1<0,即可得出結(jié)果.【詳解】由題意得,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.8.(2023·全國(guó)·高三專題練習(xí))若cosα=-SKIPIF1<0,α是第三象限的角,則sinSKIPIF1<0=____________.【答案】SKIPIF1<0【解析】根據(jù)同角的三角函數(shù)關(guān)系式中平方和關(guān)系、兩角和的正弦公式直接求解即可.【詳解】因?yàn)閏osα=-SKIPIF1<0,α是第三象限的角,所以SKIPIF1<0,所以有:SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查了同角三角函數(shù)關(guān)系式和兩角和的正弦公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.9.(2023·全國(guó)·高三專題練習(xí))SKIPIF1<0____________.【答案】SKIPIF1<0【分析】由正切的差角公式,可得SKIPIF1<0,經(jīng)過(guò)等量代換與運(yùn)算可得答案.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】首先根據(jù)題意得到SKIPIF1<0,SKIPIF1<0,再利用正弦二倍角公式求解即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0題型二輔助角公式的應(yīng)用【典例1】求函數(shù)SKIPIF1<0的最大值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用兩角差的余弦公式、輔助角公式化簡(jiǎn)SKIPIF1<0,從而求得SKIPIF1<0的最大值.【詳解】SKIPIF1<0所以,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得最大值為SKIPIF1<0.故選:A【題型訓(xùn)練】一、單選題1.(2023·新疆和田·校考一模)該函數(shù)SKIPIF1<0的最大值是(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)輔助角公式化簡(jiǎn)結(jié)合三角函數(shù)的性質(zhì)即得.【詳解】因?yàn)镾KIPIF1<0,又SKIPIF1<0,所以函數(shù)SKIPIF1<0的最大值是2.故選:C.2.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最小正周期和最大值分別是(
)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和2 C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和2【答案】C【分析】利用輔助角公式化簡(jiǎn)SKIPIF1<0,結(jié)合三角函數(shù)周期性和值域求得函數(shù)的最小正周期和最大值.【詳解】由題,SKIPIF1<0,所以SKIPIF1<0的最小正周期為SKIPIF1<0,最大值為SKIPIF1<0.故選:C.3.(2023春·云南昭通·高三校考階段練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)三角函數(shù)的輔角公式可得SKIPIF1<0,進(jìn)而SKIPIF1<0,再根據(jù)SKIPIF1<0,分析可得SKIPIF1<0,由此即可求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:C.【點(diǎn)睛】本題主要考查了三角函數(shù)的輔角公式,三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.4.(2023·廣西·校聯(lián)考模擬預(yù)測(cè))SKIPIF1<0的值所在的范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用輔助角公式變形,再探討角所在區(qū)間即可判斷作答.【詳解】SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0,所以SKIPIF1<0的值所在的范圍是SKIPIF1<0.故選:A二、填空題5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為________【答案】SKIPIF1<0【分析】根據(jù)向量數(shù)量積的乘法運(yùn)算法則計(jì)算,結(jié)合輔助角公示即可求得最大值.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.6.(2023·陜西西安·??寄M預(yù)測(cè))若SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】利用輔助角公式得SKIPIF1<0即可求出SKIPIF1<0即可求解SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<0.7.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的最大值為______.【答案】2【分析】利用三角誘導(dǎo)公式和恒等變換化簡(jiǎn)得到SKIPIF1<0,從而求出最大值.【詳解】SKIPIF1<0SKIPIF1<0故函數(shù)SKIPIF1<0的最大值為2故答案為:2題型三三角函數(shù)式的化簡(jiǎn)策略方法1.三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則2.三角函數(shù)式化簡(jiǎn)的方法(1)弦切互化,異名化同名,異角化同角,降冪或升冪.(2)在三角函數(shù)式的化簡(jiǎn)中“次降角升”和“次升角降”是基本的規(guī)律,根號(hào)中含有三角函數(shù)式時(shí),一般需要升次.【典例1】已知SKIPIF1<0,則SKIPIF1<0的值是(
)A.SKIPIF1<0 B.不存在 C.SKIPIF1<0或不存在 D.SKIPIF1<0【答案】C【分析】結(jié)合倍角公式化簡(jiǎn)、因式分解,即可求SKIPIF1<0的值.【詳解】由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.故選:C【典例2】已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先利用降冪公式,再利用二倍角公式化簡(jiǎn)即得解.【詳解】由已知SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.平方得SKIPIF1<0,所以SKIPIF1<0.故選:A.【題型訓(xùn)練】一、單選題1.(2023·江西九江·瑞昌市第一中學(xué)校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先利用降冪公式,再利用二倍角公式化簡(jiǎn)即得解.【詳解】由已知SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.平方得SKIPIF1<0,所以SKIPIF1<0.故選:A.2.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)誘導(dǎo)公式、兩角差的正弦公式、二倍角的余弦公式化簡(jiǎn)即可求解.【詳解】由SKIPIF1<0,所以SKIPIF1<0.故選:D.3.(2023·黑龍江哈爾濱·哈師大附中校考模擬預(yù)測(cè))已知銳角SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用二倍角公式公式及同角三角函數(shù)的基本關(guān)系將弦化切,再根據(jù)兩角差的正切公式計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C4.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由同角三角函數(shù)的平方關(guān)系、二倍角公式可得SKIPIF1<0,再由降冪公式、誘導(dǎo)公式可得SKIPIF1<0,即可得解.【詳解】由SKIPIF1<0兩邊平方得:SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0.故選:B.【點(diǎn)睛】本題考查了同角三角函數(shù)的平方關(guān)系、誘導(dǎo)公式及二倍角公式的綜合應(yīng)用,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用降冪公式,化簡(jiǎn)求值.【詳解】SKIPIF1<0,解得:SKIPIF1<0.故選:B6.(2023·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】結(jié)合同角三角函數(shù)的基本關(guān)系式、降次公式求得正確答案.【詳解】依題意SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,負(fù)根舍去.故選:B7.(2023·河北·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用兩角和正切公式得SKIPIF1<0,再利用二倍角公式化簡(jiǎn),根據(jù)同角三角函數(shù)的基本關(guān)系將弦化切,代入計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D二、填空題8.(2023春·上海·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的最小正周期為__________.【答案】SKIPIF1<0【分析】先將函數(shù)化簡(jiǎn)降次,然后再利用公式求周期.【詳解】SKIPIF1<0,所以最小正周期為SKIPIF1<0.故答案為:SKIPIF1<0.9.(2023·黑龍江哈爾濱·哈爾濱三中??寄M預(yù)測(cè))已知SKIPIF1<0為鈍角,SKIPIF1<0,則SKIPIF1<0的值為______.【答案】SKIPIF1<0【分析】利用二倍角公式可得SKIPIF1<0,再由SKIPIF1<0可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為鈍角,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0為鈍角,所以SKIPIF1<0.故答案為:SKIPIF1<0.10.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值是______.【答案】SKIPIF1<0【解析】利用誘導(dǎo)公式可求得SKIPIF1<0的值,結(jié)合同角三角函數(shù)的平方關(guān)系可求得SKIPIF1<0的值,再利用兩角差的正弦公式和二倍角公式可求得結(jié)果.【詳解】由于SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查三角函數(shù)值的計(jì)算,涉及誘導(dǎo)公式、二倍角公式以及兩角差的正弦公式的應(yīng)用,考查計(jì)算能力,屬于中等題.題型四給值求值問(wèn)題策略方法給值求值:一般是給出某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,使相關(guān)角相同或具有某種關(guān)系.【典例1】已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)誘導(dǎo)公式、倍角余弦公式有SKIPIF1<0,將條件代入求值即可.【詳解】SKIPIF1<0.故選:C【題型訓(xùn)練】一、單選題1.(2023·云南昆明·高三昆明一中??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)二倍角的余弦公式求出SKIPIF1<0,觀察角的關(guān)系,利用誘導(dǎo)公式計(jì)算即可求解.【詳解】由題意知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:D.2.(2023·河北·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用三角函數(shù)誘導(dǎo)公式結(jié)合二倍角余弦公式,化簡(jiǎn)求值,即得答案.【詳解】由題意得SKIPIF1<0SKIPIF1<0,故選:B3.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【分析】由題解得SKIPIF1<0,再由SKIPIF1<0求解即可.【詳解】由SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:A.4.(2023·四川遂寧·四川省遂寧市第二中學(xué)校校考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)兩角差與和的正弦公式可得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,結(jié)合二倍角的余弦公式計(jì)算即可求解.【詳解】因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0.故選:A.5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用誘導(dǎo)公式和商數(shù)關(guān)系展開后,然后由和差公式可得.【詳解】因?yàn)镾KIPIF1<0所以SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0故選:A6.(2023·河南·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)切化弦以及兩角和差公式解出SKIPIF1<0,代入兩角差的余弦公式即可.【詳解】由題意可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故選:A.7.(2023·廣西南寧·南寧二中校考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用降冪公式及誘導(dǎo)公式計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:A8.(2023·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0為銳角,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由同角三角函數(shù)的基本關(guān)系求出SKIPIF1<0,SKIPIF1<0,再由二倍角公式求出SKIPIF1<0,最后由SKIPIF1<0計(jì)算可得.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0為銳角且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B9.(2023·江西九江·統(tǒng)考三模)已知SKIPIF1<0,且SKIPIF1<0,則cosβ=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.0【答案】D【分析】利用三角恒等變換計(jì)算即可,注意整體思想的運(yùn)用.【詳解】解法一:∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故選:D.解法二:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,故選:D.二、填空題10.(2023·高三課時(shí)練習(xí))已知SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【解析】根據(jù)兩角和的正弦公式,將原式化簡(jiǎn)整理,即可得出結(jié)果.【詳解】由SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0,從而有SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.11.(2023·山東濟(jì)寧·嘉祥縣第一中學(xué)統(tǒng)考三模)已知SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】由輔助角公式和二倍角的余弦公式化簡(jiǎn)即可得出答案.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.12.(2023秋·重慶沙坪壩·高三重慶南開中學(xué)??计谀┮阎猄KIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】利用兩角差的余弦公式展開,即可得到答案;【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<013.(2023·重慶·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】先通過(guò)條件確定角SKIPIF1<0的范圍,進(jìn)而可求出SKIPIF1<0,再利用SKIPIF1<0,通過(guò)誘導(dǎo)公式以及二倍角的正弦公式化簡(jiǎn)計(jì)算.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,與SKIPIF1<0矛盾,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0.題型五給值求角問(wèn)題策略方法給值求角:實(shí)質(zhì)上可轉(zhuǎn)化為“給值求值”,即通過(guò)求角的某一個(gè)三角函數(shù)值來(lái)求角.在選取函數(shù)時(shí),遵循以下原則:①已知正切函數(shù)值,選正切函數(shù).②已知正、余弦函數(shù)值,若角的范圍是0,π2,選正、余弦函數(shù)皆可,若角的范圍是(0,π),選余弦函數(shù),若角的范圍是【典例1】已知SKIPIF1<0,則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用角的變換SKIPIF1<0,結(jié)合兩角差的正弦公式求得SKIPIF1<0,檢驗(yàn)各選項(xiàng)即可.【詳解】由SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,從而SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),只有B符合;當(dāng)SKIPIF1<0時(shí),四個(gè)選項(xiàng)均不符合.故答案為:B.【題型訓(xùn)練】一、單選題1.(2023·河南·校聯(lián)考模擬預(yù)測(cè))設(shè)SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,且SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用兩角和的正切公式求解即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,所以SKIPIF1<0所以SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:B.2.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【分析】根據(jù)給定條件利用三角恒等變換求出SKIPIF1<0的值,再判斷SKIPIF1<0的范圍即可得解.【詳解】因SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,有SKIPIF1<0,于是得SKIPIF1<0,因此,SKIPIF1<0,所以SKIPIF1<0.故選:C3.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用同角三角函數(shù)平方關(guān)系可求得SKIPIF1<0,利用兩角和差余弦公式可求得SKIPIF1<0,結(jié)合SKIPIF1<0可得結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.故選:B.二、多選題4.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0,則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】首先由兩角和的正切公式得出SKIPIF1<0,即可得到SKIPIF1<0的取值;【詳解】解:由題意得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的值可能為SKIPIF1<0,SKIPIF1<0.故選:AC5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】先根據(jù)SKIPIF1<0,判斷角SKIPIF1<0的范圍,再根據(jù)SKIPIF1<0求SKIPIF1<0;根據(jù)平方關(guān)系,判斷SKIPIF1<0的值;利用公式SKIPIF1<0求值,并根據(jù)角的范圍判斷角SKIPIF1<0的值;利用公式SKIPIF1<0和SKIPIF1<0,聯(lián)合求SKIPIF1<0.【詳解】①因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故有SKIPIF1<0,SKIPIF1<0,解出SKIPIF1<0,故A錯(cuò)誤;②SKIPIF1<0,由①知:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確;③由①知:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,有SKIPIF1<0,故C正確;④由SKIPIF1<0,由③知,SKIPIF1<0,兩式聯(lián)立得:SKIPIF1<0,故D錯(cuò)誤.故選:BC【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是三角函數(shù)恒等變形的靈活應(yīng)用,尤其是確定角的范圍,根據(jù)三角函數(shù)值SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GAT 760.5-2008公安信息化標(biāo)準(zhǔn)管理分類與代碼 第5部分:制定修訂方式代碼》專題研究報(bào)告深度
- 2026年深圳中考語(yǔ)文壓縮語(yǔ)段專項(xiàng)試卷(附答案可下載)
- 2026年深圳中考英語(yǔ)期末綜合測(cè)評(píng)試卷(附答案可下載)
- 山東省青島市市北區(qū)2026年九年級(jí)上學(xué)期期末考試物理試題附答案
- 禁毒相關(guān)題目及答案
- 2026年深圳中考數(shù)學(xué)圓的切線專項(xiàng)試卷(附答案可下載)
- 大學(xué)生信息技術(shù)培訓(xùn)課件
- 臨終患者的心理社會(huì)支持
- 第14課《紅燭》(教學(xué)設(shè)計(jì))高二語(yǔ)文+拓展模塊下冊(cè)(高教版2023年版)
- 產(chǎn)科圍手術(shù)期產(chǎn)后焦慮護(hù)理
- 湖北省2024-2025學(xué)年高一上學(xué)期期末聯(lián)考數(shù)學(xué)試卷 含解析
- 農(nóng)業(yè)銀行房貸合同范本
- 成體館加盟協(xié)議書范文范本集
- DB34T 4506-2023 通督調(diào)神針刺療法應(yīng)用指南
- 02-輸電線路各階段設(shè)計(jì)深度要求
- 《認(rèn)識(shí)時(shí)鐘》大班數(shù)學(xué)教案
- T-CI 178-2023 高大邊坡穩(wěn)定安全智能監(jiān)測(cè)預(yù)警技術(shù)規(guī)范
- THHPA 001-2024 盆底康復(fù)管理質(zhì)量評(píng)價(jià)指標(biāo)體系
- 傷口的美容縫合減少瘢痕的形成
- MSOP(測(cè)量標(biāo)準(zhǔn)作業(yè)規(guī)范)測(cè)量SOP
- 顱鼻眶溝通惡性腫瘤的治療及護(hù)理
評(píng)論
0/150
提交評(píng)論