版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.2.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.3.設(shè),滿足,則的取值范圍是()A. B. C. D.4.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]5.某幾何體的三視圖如圖所示,三視圖是腰長(zhǎng)為1的等腰直角三角形和邊長(zhǎng)為1的正方形,則該幾何體中最長(zhǎng)的棱長(zhǎng)為().A. B. C.1 D.6.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}7.已知,,,則的最小值為()A. B. C. D.8.把函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.給出下列四個(gè)命題①的值域?yàn)棰诘囊粋€(gè)對(duì)稱軸是③的一個(gè)對(duì)稱中心是④存在兩條互相垂直的切線其中正確的命題個(gè)數(shù)是()A.1 B.2 C.3 D.49.一個(gè)頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計(jì)樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)共有()A. B. C. D.10.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.過(guò)雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.12.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長(zhǎng)度B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度D.向右平移個(gè)單位長(zhǎng)度二、填空題:本題共4小題,每小題5分,共20分。13.將2個(gè)相同的紅球和2個(gè)相同的黑球全部放入甲、乙、丙、丁四個(gè)盒子里,其中甲、乙盒子均最多可放入2個(gè)球,丙、丁盒子均最多可放入1個(gè)球,且不同顏色的球不能放入同一個(gè)盒子里,共有________種不同的放法.14.已知過(guò)點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過(guò)作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)__________.16.在四棱錐中,是邊長(zhǎng)為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_(kāi)____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn).曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)過(guò)點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.18.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.19.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).(1)求證:;(2)求直線與平面所成角的正弦值.20.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α121.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).22.(10分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,且.(1)解關(guān)于的不等式;(2)如果對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.2.C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.3.C【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.4.B【解析】
作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過(guò)與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.5.B【解析】
首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長(zhǎng).【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長(zhǎng)的棱長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.6.A【解析】
解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.7.B【解析】,選B8.C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗(yàn)法判斷②③;對(duì)求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【詳解】由題,,則向右平移個(gè)單位可得,,的值域?yàn)?①錯(cuò)誤;當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,②正確;當(dāng)時(shí),,所以的一個(gè)對(duì)稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個(gè).故選:C【點(diǎn)睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗(yàn)法判斷余弦型函數(shù)的對(duì)稱軸和對(duì)稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.9.B【解析】
計(jì)算出樣本在的數(shù)據(jù)個(gè)數(shù),再減去樣本在的數(shù)據(jù)個(gè)數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個(gè)數(shù)為,樣本在的數(shù)據(jù)個(gè)數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個(gè)數(shù)為.故選:B.【點(diǎn)睛】本題考查利用頻數(shù)分布表計(jì)算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.10.A【解析】
利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.11.C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).12.D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
討論裝球盒子的個(gè)數(shù),計(jì)算得到答案.【詳解】當(dāng)四個(gè)盒子有球時(shí):種;當(dāng)三個(gè)盒子有球時(shí):種;當(dāng)兩個(gè)盒子有球時(shí):種.故共有種,故答案為:.【點(diǎn)睛】本題考查了排列組合的綜合應(yīng)用,意在考查學(xué)生的理解能力和應(yīng)用能力.14.【解析】
通過(guò)設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過(guò)∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.15.【解析】
取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.16.【解析】
做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長(zhǎng)方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過(guò)球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長(zhǎng)方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線為軸,以過(guò)點(diǎn)垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)椋越獾?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問(wèn)題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過(guò)將幾何體補(bǔ)充到長(zhǎng)方體中,將幾何體的外接球等同于長(zhǎng)方體的外接球,求出體對(duì)角線即為直徑,但這種方法適用性較差;二是通過(guò)球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過(guò)空間、平面坐標(biāo)系進(jìn)行求解.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2)【解析】
(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由題意得點(diǎn)的直角坐標(biāo)為,將點(diǎn)代入得則直線的普通方程為.由得,即.故曲線的直角坐標(biāo)方程為.(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得.設(shè)對(duì)應(yīng)參數(shù)為,對(duì)應(yīng)參數(shù)為.則,,且..【點(diǎn)睛】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題.18.(1)(2)【解析】
(1)不妨設(shè),,計(jì)算得到,根據(jù)面積得到,計(jì)算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡(jiǎn)計(jì)算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問(wèn)題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1)證明見(jiàn)解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過(guò),證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因?yàn)椋?,所以四邊形為菱形,而平面,?因?yàn)椋?,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)椋?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)椋O(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.20.A=【解析】
運(yùn)用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點(diǎn)睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運(yùn)用定義得出方程組即可求出結(jié)果,較為簡(jiǎn)單21.(1)(2)三個(gè)零點(diǎn)【解析】
(1)由題意知恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對(duì)函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無(wú)極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)?,又,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 績(jī)效考核制度
- 采購(gòu)需求分析與計(jì)劃制定制度
- 濟(jì)寧專業(yè)培訓(xùn)
- 濟(jì)南培訓(xùn)班教學(xué)課件
- 新建年產(chǎn)3億平方米包裝新材料生產(chǎn)線項(xiàng)目環(huán)境影響報(bào)告表
- 微課制作培訓(xùn)課件
- 教育咨詢服務(wù)協(xié)議書
- 津液失常課件
- 2024-2025學(xué)年山東省德州市高一下學(xué)期校際聯(lián)考(四)歷史試題(解析版)
- 2026年軟件測(cè)試技術(shù)質(zhì)量保證與風(fēng)險(xiǎn)控制題集
- DB33T 2256-2020 大棚草莓生產(chǎn)技術(shù)規(guī)程
- 《建設(shè)工程造價(jià)咨詢服務(wù)工時(shí)標(biāo)準(zhǔn)(房屋建筑工程)》
- 工程(項(xiàng)目)投資合作協(xié)議書樣本
- 10s管理成果匯報(bào)
- 半導(dǎo)體技術(shù)合作開(kāi)發(fā)合同樣式
- 茜草素的生化合成與調(diào)節(jié)
- 制程PQE述職報(bào)告
- 成人呼吸支持治療器械相關(guān)壓力性損傷的預(yù)防
- 2023年江蘇省五年制專轉(zhuǎn)本英語(yǔ)統(tǒng)考真題(試卷+答案)
- 設(shè)備完好標(biāo)準(zhǔn)
- 三星-SHS-P718-指紋鎖使用說(shuō)明書
評(píng)論
0/150
提交評(píng)論