2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷含解析_第1頁
2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷含解析_第2頁
2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷含解析_第3頁
2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷含解析_第4頁
2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京市朝陽區(qū)力邁國際學校高三第二次診斷性檢測試題數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,則()A. B. C. D.22.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.3.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.4.已知函數,若,則的值等于()A. B. C. D.5.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種6.若向量,則()A.30 B.31 C.32 D.337.已知為虛數單位,復數,則其共軛復數()A. B. C. D.8.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或99.歐拉公式為,(虛數單位)是由瑞士著名數學家歐拉發(fā)現的,它將指數函數的定義域擴大到復數,建立了三角函數和指數函數的關系,它在復變函數論里非常重要,被譽為“數學中的天橋”.根據歐拉公式可知,表示的復數位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.曲線在點處的切線方程為,則()A. B. C.4 D.811.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數為,則為()A. B. C. D.12.已知函數,,,,則,,的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.(5分)有一道描述有關等差與等比數列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數列,后三個和尚的身高依次成等比數列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.15.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.16.設滿足約束條件,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.18.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.19.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數滿足.證明:.20.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數,求隨機變量X的分布列和數學期望.21.(12分)的內角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.22.(10分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據復數模的性質即可求解.【詳解】,,故選:C本題主要考查了復數模的性質,屬于容易題.2.C【解析】

根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養(yǎng).3.B【解析】

先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.4.B【解析】

由函數的奇偶性可得,【詳解】∵其中為奇函數,也為奇函數∴也為奇函數∴故選:B函數奇偶性的運用即得結果,小記,定義域關于原點對稱時有:①奇函數±奇函數=奇函數;②奇函數×奇函數=偶函數;③奇函數÷奇函數=偶函數;④偶函數±偶函數=偶函數;⑤偶函數×偶函數=偶函數;⑥奇函數×偶函數=奇函數;⑦奇函數÷偶函數=奇函數5.B【解析】

將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.6.C【解析】

先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.7.B【解析】

先根據復數的乘法計算出,然后再根據共軛復數的概念直接寫出即可.【詳解】由,所以其共軛復數.故選:B.本題考查復數的乘法運算以及共軛復數的概念,難度較易.8.C【解析】

由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.9.A【解析】

計算,得到答案.【詳解】根據題意,故,表示的復數在第一象限.故選:.本題考查了復數的計算,意在考查學生的計算能力和理解能力.10.B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B本題主要考查了導數的幾何意義,切線方程,屬于中檔題.11.A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數學期望為.故選:A.本題考查隨機變量數學期望的計算,考查計算能力,屬于基礎題.12.B【解析】

可判斷函數在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B本題主要考查了函數單調性的判定,指數函數與對數函數的性質,利用單調性比大小等知識,考查了學生的運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.29【解析】

由約束條件作出可行域,化目標函數為以原點為圓心的圓,數形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數最值取法、值域范圍.14.【解析】

依題意設前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數列,則公比,故.15.【解析】

轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.16.【解析】

作出可行域,將目標函數整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:本題考查分式型目標函數的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)【解析】

(1)取的中點,連接,易得,進而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點,中點,連接,易證平面,平面,從而可知兩兩垂直,以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系,進而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點,連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點,中點,連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系.由,可得,在等腰梯形中,,易知,.則,,設平面的法向量為,則,取,得.設平面的法向量為,則,取,得.因為,,,所以,所以平面與平面所成的二面角的正弦值為.本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.18.(1)見解析,(2)最小正整數的值為35.【解析】

(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.19.(1)或;(2)見解析【解析】

(1)根據,利用零點分段法解不等式,或作出函數的圖像,利用函數的圖像解不等式;(2)由(1)作出的函數圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調遞減,在上單調遞增,所以,正實數滿足,則,即,(當且僅當即時取等號)故,得證.此題考查了絕對值不等式的解法,絕對值不等式的性質和均值不等式的運用,考查了分類討論思想和轉化思想,屬于中檔題.20.(1);(2)分布列見解析,期望為.【解析】

(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123本題考查古典概型,考查隨機變量的概率分布列和數學期望.解題關鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.21.(1)(2)【解析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論