版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省銅仁地區(qū)松桃縣2024屆中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、62.兩個有理數(shù)的和為零,則這兩個數(shù)一定是()A.都是零 B.至少有一個是零C.一個是正數(shù),一個是負數(shù) D.互為相反數(shù)3.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關于于x軸對稱的△A2B2C2,則點B的對應點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)4.下列幾何體中三視圖完全相同的是()A. B. C. D.5.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數(shù),固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數(shù)字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.356.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.7.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個8.已知a為整數(shù),且<a<,則a等于A.1 B.2 C.3 D.49.實數(shù)a,b在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b10.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°11.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3112.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.14.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.15.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.16.關于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是________.17.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=20°,則∠OCD=.18.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小20.(6分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為w元.求w與x之間的函數(shù)關系式.該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?21.(6分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.22.(8分)計算:(﹣2)0++4cos30°﹣|﹣|.23.(8分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數(shù)關系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?24.(10分)水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結合圖象解答下列問題:容器內原有水多少?求W與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②25.(10分)為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復綠施工,為了縮短工期,該工程隊增加了人力和設備,實際工作效率比原計劃每天提高了20%,結果提前11天完成任務,求實際平均每天施工多少平方米?26.(12分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.27.(12分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.2、D【解析】解:互為相反數(shù)的兩個有理數(shù)的和為零,故選D.A、C不全面.B、不正確.3、D【解析】
首先利用平移的性質得到△A1B1C1中點B的對應點B1坐標,進而利用關于x軸對稱點的性質得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應點B1坐標為(-1,2),則與△A1B1C1關于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關鍵.4、A【解析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.5、A【解析】
根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.6、B【解析】
根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.7、B【解析】
根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.【點睛】本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).8、B【解析】
直接利用,接近的整數(shù)是1,進而得出答案.【詳解】∵a為整數(shù),且<a<,∴a=1.故選:.【點睛】考查了估算無理數(shù)大小,正確得出無理數(shù)接近的有理數(shù)是解題關鍵.9、D【解析】試題分析:A.如圖所示:﹣3<a<﹣2,故此選項錯誤;B.如圖所示:﹣3<a<﹣2,故此選項錯誤;C.如圖所示:1<b<2,則﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此選項錯誤;D.由選項C可得,此選項正確.故選D.考點:實數(shù)與數(shù)軸10、A【解析】
利用三角形內角和求∠B,然后根據(jù)相似三角形的性質求解.【詳解】解:根據(jù)三角形內角和定理可得:∠B=30°,根據(jù)相似三角形的性質可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質,掌握相似三角形對應角相等是本題的解題關鍵.11、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.12、B【解析】
首先連接OC,AO,由切線的性質,可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【點睛】本題考查切線的性質,弧長公式,熟練掌握切線的性質是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、150【解析】
根據(jù)題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據(jù)等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.14、2.1或2【解析】
在Rt△ACB中,根據(jù)勾股定理可求AB的長,根據(jù)折疊的性質可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折疊的性質可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中點,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①當點P在DE右側時,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
則BP=2.1.
②當點P在DE左側時,同①知,BP=2
故答案為:2.1或2.【點睛】考查了折疊的性質、直角三角形的性質以及勾股定理.此題難度適中,注意數(shù)形結合思想的應用,注意折疊中的對應關系.15、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).16、b<9【解析】
由方程有兩個不相等的實數(shù)根結合根的判別式,可得出,解之即可得出實數(shù)b的取值范圍.【詳解】解:方程有兩個不相等的實數(shù)根,
,
解得:.【點睛】本題考查的知識點是根的判別式,解題關鍵是牢記“當時,方程有兩個不相等的實數(shù)根”.17、65°【解析】
解:由題意分析之,得出弧BD對應的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質要熟練把握18、1【解析】
連接AC交OB于D,由菱形的性質可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.
四邊形OABC是菱形,
.
點A在反比例函數(shù)的圖象上,
的面積,
菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)∠P=50°;(2)∠P=45°.【解析】
(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角形內角和定理計算即可;
(2)連接AB、AD,根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質得到AB⊥PA,根據(jù)等腰直角三角形的性質解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關鍵.20、(1);(2)該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.【解析】
(1)根據(jù)銷售額=銷售量×銷售價單x,列出函數(shù)關系式.(2)用配方法將(2)的函數(shù)關系式變形,利用二次函數(shù)的性質求最大值.(3)把y=150代入(2)的函數(shù)關系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數(shù)關系式為:.(2),∵﹣2<0,∴當x=30時,w有最大值.w最大值為2.答:該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元.(3)當w=150時,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應舍去.答:該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.21、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F(xiàn)為EB的中點.∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據(jù)勾股定理得:EF=FB=DC=.∵E是的中點,∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到OC與AD平行,根據(jù)AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據(jù)E為弧AC的中點,得到弧AE=弧EC,利用等弧對等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點:角平分線定義,等腰三角形的性質,平行的判定和性質,切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計算,轉換思想的應用.22、1【解析】分析:按照實數(shù)的運算順序進行運算即可.詳解:原式=1.點睛:本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟練掌握各個知識點是解題的關鍵.23、(1);(1)時,取最大值,為.【解析】
(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;
(1)將(1)中所得解析式配方成頂點式,利用二次函數(shù)的性質解答可得.【詳解】解:(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,
∵AF=x,
∴CH=x-4,
設AQ=z,PH=BQ=6-z,
∵PH∥EG,
∴,即,
化簡得z=,
∴y=?x=-x1+x(4≤x≤10);
(1)y=-x1+x=-(x-)1+,
當x=dm時,y取最大值,最大值是dm1.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是根據(jù)相似三角形的性質得出矩形另一邊AQ的長及二次函數(shù)的性質.24、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【解析】
(1)根據(jù)點的實際意義可得;(2)設與之間的函數(shù)關系式為,待定系數(shù)法求解可得,計算出時的值,再減去容器內原有的水量即可.【詳解】(1)由圖象可知,容器內原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經過點(0,0.3),故設函數(shù)關系式為W=kt+0.3.又因為函數(shù)圖象經過點(1.5,0.9)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年萊蕪職業(yè)技術學院馬克思主義基本原理概論期末考試模擬題及答案解析(奪冠)
- 2025年梓潼縣招教考試備考題庫附答案解析(奪冠)
- 2025年黑龍江農業(yè)職業(yè)技術學院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- 2025年屏山縣招教考試備考題庫含答案解析(奪冠)
- 2025年廣東省梅州市單招職業(yè)傾向性測試題庫附答案解析
- 2024年海安縣幼兒園教師招教考試備考題庫附答案解析(必刷)
- 2024年湖南中醫(yī)藥高等??茖W校馬克思主義基本原理概論期末考試題帶答案解析
- 2024年青島城市學院馬克思主義基本原理概論期末考試題帶答案解析(必刷)
- 2024年甘南縣招教考試備考題庫附答案解析(必刷)
- 吳和成統(tǒng)計學課件
- 預包裝食品配送服務投標方案(技術方案)
- T-CAS 886-2024 輸血相容性檢測設備檢測性能驗證技術規(guī)范
- 中建機電工程預留預埋施工方案
- 新型電力系統(tǒng)背景下新能源發(fā)電企業(yè)技術監(jiān)督管理體系創(chuàng)新
- 旅游景區(qū)旅游安全風險評估報告
- FZ∕T 54007-2019 錦綸6彈力絲行業(yè)標準
- 顱腦外傷的麻醉管理
- AED(自動體外除顫儀)的使用
- FZ∕T 74002-2014 運動文胸行業(yè)標準
- 2024年福建寧德高速交警招聘筆試參考題庫附帶答案詳解
- 中國礦業(yè)權評估準則(2011年)
評論
0/150
提交評論