版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AIforAfrica:
Usecases
delivering
impact
July2024
Copyright?2024GSMA
GSMAGSMACentralInsightsUnit
TheGSMAisaglobalorganisationunifyingthemobile
ecosystemtodiscover,developanddeliverinnovation
foundationaltopositivebusinessenvironmentsand
societalchange.Ourvisionistounlockthefullpowerof
connectivitysothatpeople,industry,andsocietythrive.
Representingmobileoperatorsandorganisationsacrossthe
mobileecosystemandadjacentindustrieschallenges,the
GSMAdeliversforitsmembersacrossthreebroadpillars:
ConnectivityforGood,IndustryServicesandSolutions,and
Outreach.Thisactivityincludesadvancingpolicy,tackling
today’sbiggestsocietal,underpinningthetechnologyand
interoperabilitythatmakemobilework,andprovidingthe
world’slargestplatformtoconvenethemobileecosystem
attheMWCandM360seriesofevents.
TheCentralInsightsUnit(CIU)sitsatthecoreofGSMA
MobileforDevelopment(M4D)andproducesin-depth
researchontheroleandimpactofmobileanddigital
technologiesinadvancingsustainableandinclusive
development.TheCIUengageswithpublicandprivate
sectorpractitionerstogenerateuniqueinsightsandanalysis
onemerginginnovationsintechnologyfordevelopment.
Throughourinsights,wesupportinternationaldonorsto
buildexpertiseandcapacityastheyseektoimplement
digitisationinitiativesinlow-andmiddle-incomecountries
throughpartnershipswithinthedigitalecosystem.
Contactusbyemail:centralinsights@
Weinviteyouto?ndoutmoreat
FollowtheGSMAonTwitter/X:@GSMA
ThisinitiativehasbeenfundedbyUKAidfromtheUK
GovernmentandissupportedbytheGSMAandits
members.Theviewsexpresseddonotnecessarilyre?ect
theUKGovernment’so?cialpolicies.
AxumisanAfrocentricimpactcompanydedicatedto
fosteringclimate-positive,digitallyinnovative,inclusive
growthacrossAfrica,theMiddleEastandaroundthe
world.Thecompanyworkswithlocallyandglobally
in?uentialleadersthatseektodrivesustainable
development,inclusionandprosperity.
Throughstrategicleadershipandtheabilitytotransform
ideasintoreality,Axumpartnerswithdiversestakeholders
todrivepositivechange.Boastingover150yearsof
collectiveleadershipexperience,andateamofnearly
100across10o?cesinAfricaandtheMiddleEast,Axum
leveragesawealthofmultisectoralandmulticultural
expertisetohelpclientsnavigatepressingglobal
challengesandrealiseAfricaandtheMiddleEast’s
immensepotential.
Authorsandcontributors
Authors:EugénieHumeauandTanviDeshpande
Contributor:DanieleTricarico
Acknowledgements
ThisreportdrawsonresearchconductedfortheGSMAby
Axum.WewouldliketothankGathoniKang'ethe,Jamila
Raji,JonathanMunge,SalmaAitHssayene,IsisNyong’o
MadisonandRobinMillerfortheircontribution.
Wewouldliketothankthefollowingindividualswhowere
partofourExpertAdvisoryGroupandprovidedguidance
andexpertiseduringtheresearchprojectthroughvarious
engagements:AlbanOdhiambo(TonyBlairInstitutefor
GlobalChange),DeshniGovender(GIZ–FAIRForward),
DrGirmawAbebeTadesse(MicrosoftAIforGoodLab),
KateKallot(Amini),KoliweMajama(MozillaFoundation),
LavinaRamkissoon(AfricanUnion),LilySteele(Global
InnovationFund),LinetKwamboka(GlobalPartnershipfor
SustainableDevelopmentData),LukasBorkowski(Viamo),
MatthewSmith(IDRC)andDrOlubayoAdekanmbi(Data
ScienceNigeria).
WewouldalsoliketothankDrEmmyChirchirandDr
EmmelineSkinner(FCDOEastAfricaResearchand
InnovationHub),KristinKlose(FCDOSouthAfricaResearch
andInnovationHub)andOluwasegunAdetunde(FCDO
WestAfricaResearchandInnovationHub)fortheirinput
andfeedback.
Finally,wewanttothankthemanyindividualsand
organisationsthatcontributedtotheresearch.Afulllistof
organisationsconsultedfortheresearchislistedattheend
ofthereport.
Contents
Executivesummary4
1.Introduction7
2.Researchobjectivesandmethodology10
3.De?ningAI14
WhatisAI?15
AIfundamentalsinAfrica16
4.Usecasesdeliveringimpact29
Keytrendsacrossusecases30
Agricultureandfoodsecurity35
Energy42
Climateaction49
5.Towardsathrivingecosystem56
Creatingaconducivepolicyenvironment57
Fosteringpartnerships60
Unlocking?nancingatscale63
Supportingresearchanddevelopment64
6.Conclusionandrecommendations66
Annexes72
Listof?gures
Figure1EstimatedannualvalueoftheAImarket
inAfricarelativetotheglobalmarket
Figure2PotentialvalueaddedbyAItothe
Africaneconomy
Figure3TheAIecosystemframework
Figure14dAllocationofusecasesbyownership
Figure14eAllocationofusecasesbytypeof
solution
Figure15Agriculture’scontributiontoGDPand
labourforcebycountry
Figure4The?veVsofbigdata
Figure5Examplesofdatatypesandsourcesfor
AIfordevelopment
Figure6Generationandusageofdatasets
globally
Figure16Overviewofusecasesinagricultureand
foodsecurity
Figure17Heatmapofusecasesinagricultureand
foodsecuritybycountry
Figure18Accesstoelectricitybycountry
Figure7Prevalenceofinternetcontentin
Africanlanguagescomparedtoglobal
benchmarks
Figure19Africancountrieswithmorediesel
generatorcapacitythangridcapacity
Figure20ElectricitygridmixinSub-SaharanAfrica
Figure8AIinfrastructureandcomputelayers
Figure21Overviewofusecasesinenergy
Figure9Currentandprojectedsmartphone
adoptionbycountry
Figure22Heatmapofusecasesinenergyby
country
Figure10Projectedpercentageof5Gconnections
bycountry
Figure11SkillsetsrequiredbyAIbuildersandAI
users
Figure12Whatmakesagoodprompt?
Figure13Distributionofusecaseapplicationsby
country
Figure27AIpolicydevelopmentinAfrica
Figure14aAllocationofusecasesbysector
Figure14bAllocationofusecasesbytypeofAI
Figure14cAllocationofusecasesbytypeof
organisation
Figure23CO2emissionsbyregion
Figure24Overviewofusecasesinclimateaction
Figure25Remotesensingasatooltosupport
climateaction
Figure26Heatmapofusecasesinclimateaction
bycountry
Figure28Typesofactorsinvolvedinpartnerships
forAI
Listoftables
Table1Researchmethodology
Table2Hungerassessmentbycountry
Table5VenturecapitalinvestmentsinAIby
country
Table3Vulnerabilitytoclimatechangeand
readinesstoimproveresilience
Table4Venturecapitalinvestmentsintechby
country
Table6CountryranksforR&Dcapabilities
Table7KeyrecommendationstosupportAI
deploymentandadoption
Listofboxes
Box1Buildinglocallanguagedatasets:Challenges
andopportunities
Box5Usecasedeepdive:Foodsecurity
forecasting
Box2Whatarethebene?tsofedgecomputing?
Box3'AskViamoAnything'bringsgenerative
AItechnologytodigitallydisconnected
communities
Box4Usecasedeepdive:Precisionagriculture
Box6Usecasedeepdive:Energyaccessand
demandassessment
Box7Usecasedeepdive:Biodiversitymonitoring
Box8UNESCO’shumanrights-centredapproachto
theethicsofAI
AIforAfrica:Usecasesdeliveringimpact
2/76
Listofacronyms
AIArti?cialIntelligenceIVRInteractiveVoiceResponse
CDRCallDetailRecordsLLMLargeLanguageModel
DFSDigitalFinancialServicesMLMachineLearning
EWSEarlyWarningSystemMNOMobileNetworkOperator
GDPGrossDomesticProductNLPNaturalLanguageProcessing
GISGeographicInformationSystemNRMNaturalResourcesManagement
GPTGenerativePre-trainedTransformerPAYGPay-As-You-Go
GPUGraphicProcessingUnitPPPPublic-PrivatePartnership
HPCHighPerformanceComputingR&DResearchandDevelopment
HWCHuman-WildlifeCon?ictSHSSolarHomeSystem
IoTInternetofThingsUSSDUnstructuredSupplementaryServiceData
De?nitions
AIforDevelopment:Weusetheterm‘AIfor
development’torefertotheuseofAIand
itsapplicationswiththepotentialtoaddress
developmentchallengesinlow-andmiddle-income
countries.
Algorithm:Aprocessorsetofrulestobefollowed
incalculations,especiallybyacomputer,tosolvea
problem.
Arti?cialintelligence:Arti?cialintelligence(AI)
iscomprisedofwidelydi?erenttechnologiesthat
canbebroadlyde?nedas“self-learning,adaptive
systems.”1AIhasthecapabilitytounderstand
language,solveproblems,recognisepicturesand
learnbyanalysingpatternsinlargesetsofdata.
BigTech:Inthisreport,BigTechplayersreferto
thelargetechcompaniesknownglobally,including
Google,Microsoft,IBM,Meta,andAmazon.The
terms'BigTech'and'largetechcompanies'areused
interchangeablyinsomecontexts.
Computervision:AtypeofAIthatenables
computersandothermachinestoidentifyand
interpretvisualinputsfromimagesandvideos.3
GenerativeAI:AtypeofAIthatinvolvesgenerating
newdataorcontent,includingtext,imagesorvideos,
basedonuserpromptsandbylearningfromexisting
datapatterns.
Machinelearning:Asub?eldofAI,broadlyde?ned
asthecapabilityofamachinetoimitateintelligent
humanbehaviourandlearnfromdatawithoutbeing
explicitlyprogrammed.4
NLP:A?eldofmachinelearninginwhichmachines
learntounderstandnaturallanguageasspokenand
writtenbyhumans,insteadofthedataandnumbers
normallyusedtoprogramcomputers.
PredictiveAI:AtypeofAIthatusesstatistical
analysisandmachinelearningalgorithmstomake
predictionsaboutpotentialfutureoutcomes,identify
causationandassessrisks.5
Compute:Computereferstotheprocessof
performingcalculationsorcomputationsrequired
foraspeci?ctask,suchastraininganAImodel.It
alsoencompassesthehardwarecomponents,like
chips,thatcarryoutthesecalculations,aswellasthe
integratedsystemsofhardwareandsoftwareusedto
performcomputingtasks.2
Remotesensing:Acquiringinformationfroma
distanceviaremotesensorsonsatellites,aircrafts
anddronesthatdetectandrecordre?ectedor
emittedenergy.AllobjectsonEarthre?ect,absorb
ortransmitenergy,withtheamountvaryingby
wavelength.Researcherscanusethisinformationto
identifydi?erentEarthfeaturesaswellasdi?erent
rockandmineraltypes.6
1DefinitionbytheInternationalTelecommunicationUnion(ITU).
2AINowInstitute.(2023).ComputationalPowerandAI.
3DefinitiontakenfromMicrosoftAzure’sdictionaryoncloudcomputing.
4DefinitionbytheMITSloanSchoolofManagement,basedonthedefinitionbyAIpioneerArthurSamuel.
5DefinitionfromtheCarnegieCouncilforEthicsinInternationalAffairs.
6DefinitionbyNASAEarthdata.
AIforAfrica:Usecasesdeliveringimpact
3/76
Executivesummary
ThepotentialofAIinAfrica
AIholdsimmensepotentialtoboostAfrica’s
economyandtosupporttheSustainable
DevelopmentGoals(SDGs)onthecontinent.WhileAI
isalreadybeingdevelopedanddeployedtosupport
arangeofusecasesacrossAfricancountries,little
researchhasfocusedonbuildingabodyofevidence
ofAIusecasesfordevelopmentonthecontinent.
Thisreportisbasedontheanalysisofover90use
caseapplicationsidenti?edinKenya,Nigeria,and
SouthAfrica–whichbene?tfromthrivingtech
ecosystems–acrossagricultureandfoodsecurity,
energy,andclimate.WhilemanyAIusecasesare
relativelynascent,withsomebeingdeployedas
partofprojectsorpilotschemes,anumberof
commerciallyviablesolutionshavealsoemerged.
Often,AIisbeingincorporatedintoexistingdigital
productsandservices,actingasanenablertomake
digitalsolutionsmorerelevantande?cient,amplify
theirimpact,andfacilitatescaling.
TheagritechsectorisseeingmostoftheAI
innovation,especiallyinKenyaandNigeriawhere
agriculturecontinuestoplayasigni?cantroleinthe
economy.AIisalreadybeingusedforagricultural
advisory,withcompanieslikeTomorrowNowand
ThriveAgricprovidingfarm-levelinsightstofarmers,
andfor?nancialserviceswithcompanieslike
ApolloAgriculturedevelopingalternativecredit
assessmentmethods.AIisalsobeingdeployed
intheenergysector,especiallyinNigeria,where
emergingtechnologieslikeInternetofThings(IoT)
actasanentrypointforadvanceddataanalytics
insmartenergymanagement.Usecasessuchas
energyaccessmonitoringandproductiveuseasset
?nancing,developedbycompanieslikeNithio,
remainatadevelopingornascentstagebutpresent
signi?cantpotentialtoreduceenergypoverty.AI
isalsosupportingclimateusecasesespeciallyfor
biodiversitymonitoringandwildlifeprotection
inKenyaandSouthAfrica,drivenbylargetech
companieslikeMicrosoft’sAIforGoodLabandnon-
pro?torganisationssuchasRainforestConnection.
AIforAfrica:Usecasesdeliveringimpact
4/76
AIfundamentalsandenablingenvironment
Theincreasingavailabilityofdatageneratedby
remotesensingtechnologies,suchason-the-ground
sensors,droneswithhigh-resolutioncameras,and
satellites,hasledtothedevelopmentofmany
AI-drivenusecasesacrosssectors.Analysisof
geospatialandremotesensingdata,poweredby
machinelearning(ML),cansupportawiderange
ofusecasesandactivitiessuchasmonitoringsoil
conditionsfore?ectivecropmanagement,mapping
energyaccessino?-gridareastoinformenergy
planning,andmonitoringclimatechangeimpacts
onecosystems.Despitetheseadvancements,the
availabilityoflocallyrelevantdataremainslimitedin
Africaandposesamajorobstacletodevelopingand
deployingtailoredsolutionsthataddresschallenges
thatareuniquetothecontinent.Inadditionto
barriersinaccessinggovernmentanddomain-
speci?cdata,oneofthemostsigni?cantgapsisin
languagedata.Thescarcityoflocallanguagedata
limitstherelevanceofAI-enabledservicesandposes
asigni?cantbarriertothedevelopmentofgenerative
AIsolutionsthatrelyonlanguagemodels.
InfrastructureandcomputecapacityinAfrica
isgrowing,andcountrieslikeSouthAfricahave
emergedasregionalleaders.Increasinginvestments
indatacentresfromlargetechcompaniesandMobile
NetworkOperators(MNOs)inNigeriaandKenyaare
alsodrivingmomentumintheregion,bringingcritical
storageandcomputingcapacitytothelocallevel.
However,thehighcostsofhardwaresuchasGraphic
ProcessingUnits(GPUs)andcloudcomputingstill
constituteamajorbarriertoAIdeploymentand
adoption,especiallyforlocalentrepreneursand
researcherswithlimited?nancialresources.Aslocal
computeecosystemscontinuetodevelop,thereisan
opportunityforcountriesinAfricatotapintotheir
mobile-?rstmarketstobuildcapacityindistributed-
edgecomputing.InKenyaforexample,deeptech
companyFastaggerdevelopsMLcapabilitiesonedge
devices,includingonlower-endsmartphones.
Acrosscountries,asigni?cantskillsgapstill
underminesthedevelopmentoftheAIecosystem
andusecases.Whileuniversitieso?erAI-related
courses,theyoftenfailtokeeppacewithindustry
needs,andstudentshavelimitedopportunitiesfor
practicallearningandhands-onexperiences.Thereis
alsoadisproportionatefocusoncoreAIskills,suchas
MLanddatascience,withlessemphasisonbuilding
themultidisciplinaryskillsetsneededtoleverage
AItoaddresspressingsocioeconomicchallenges.
Despitethesechallenges,organisationslikeData
ScienceNigeria(DSN)o?erupskillingandmentorship
programmestobuildapipelineofAItalent.In
parallel,endusersrequireafoundationallevelof
digitalliteracytoaccessAI-enabledservices,which
areprimarilyaccessiblethroughdigitalchannelslike
mobiledevices.However,lackofknowledgeand
skillsremainsoneofthegreatestbarrierstoadoption
anduseofdigitaltoolsandservices,especiallyfor
women,low-incomeandruralcommunities,and
personswithdisabilities.
WhileKenya,NigeriaandSouthAfricaareallregional
techleadersandhavesoliddigitalfoundationsthat
canserveasthebuildingblocksforAIdevelopment,
keychallengesremainintheecosystem.Despite
wideenthusiasmaboutthepotentialofAIforAfrica
forexample,privatesectorinvestorsremainrisk-
averseaboutinvestingindeeptech,andstartups
havetorelyongrantfundingfromdevelopment
partnersanddevelopment?nanceinstitutions(DFIs).
Similarly,lowpublicandprivatesectorinvestmentin
ResearchandDevelopment(R&D)mayundermine
thedevelopmentoflocalsolutions.Whilesome
countriesinAfricahavealreadydevelopednationalAI
strategies,Kenya,NigeriaandSouthAfricaarestillin
theprocessofdraftingtheirown–buthaveadopted
inclusiveformulationprocesses.Mostframeworks
acrossthecontinentremainintheirinfancy,
highlightingtheneedtoshiftfrompolicyformulation
toimplementationandtoensureethical,responsible
andsafeuseofAI.
AIforAfrica:Usecasesdeliveringimpact
5/76
High-levelrecommendations
Di?erentstakeholders–governments,development
partners,DFIs,NGOsandCivilSocietyOrganisations
(CSOs),largetechcompaniesandstartups,and
researchandacademicinstitutions–cantakea
numberofactionsandcollaboratetoensurethat
impactfulinnovationsinAfricacanbedeployedand
scaled.Thisinvolvesinvestingindomain-speci?c
andlocallanguagedata,adoptingparticipatory
approachestodatacollection,unlockingaccessto
existingdatasources,andensuringdataprivacyand
security.Strengtheningbaselineinfrastructureand
promotingrenewableenergy,providinghardware
andcloudcredits,enhancingedgecomputing
capabilitiesandbuildinginstitutionalcapacitywillbe
essentialtoboostlocalcomputecapacity.Inaddition,
fosteringacademic-industrycollaboration,raising
awarenessandbuildingcapacityinthepublicsector
willbeessentialtocreateapipelineofAItalentwhile
ensuringinformedpolicymaking.Tofosteradoption
andusageofAI-enabledservices,enhancingdigital
skillsamongendusersandintegratingemergingskills
likeprompt-engineeringintoupskillingprogrammes
willbekey,especiallyasgenerativeAIsolutions
graduallygrowinAfrica.
Stakeholdersacrosssectorscanalsofocuson
supportingthewidertechandAIecosystemto
fosteranenvironmentconducivetoinnovation
andAIdeploymentacrossusecases.Thisinvolves
engaginginpartnershipstounlockaccesstocritical
resourcesforAIentrepreneursandresearchers,and
tosupportthedevelopmentoftheAIecosystem
throughdata-sharingorinfrastructure-sharing
initiatives.Adoptingaconsortium-basedapproach
hasthepotentialtohelpaddressthe?nancinggap,
whileadoptinginnovative?nancemechanisms
cande-riskinvestments.Combiningfundingwith
technicalassistanceandgo-to-marketsupportcan
alsohelpfoundersintheirscalingjourney.Increased
R&Dspendingwillbeessentialtosupportlocal
researchcapacity,whilelocal-globalknowledge
exchangecandrivefurthermomentumandraise
awarenessaboutlocalinnovation.Ascountrieswork
ondevelopingnationalAIstrategies,itwillbecritical
toensureacollaborativeandinclusiveprocess,to
includeprinciplesfortheethicalandsafeuseofAI,
andtoestablishaclearroadmapforimplementation.
Policymakerscanalsoconsiderrollingoutregulations
inaphasedmannertoallowinnovationto?ourish.
AIforAfrica:Usecasesdeliveringimpact
6/76
1.Introduction
AIforAfrica:Usecasesdeliveringimpact
7/76
Overthepastyear,arti?cialintelligence(AI)and
itstransformativepotentialhascapturedglobal
attention.ThepotentialofAIinhelpingachievethe
2030SustainableDevelopmentGoals(SDGs)iswell
established.7,8AIapplicationscancreatesocialand
economicimpact,especiallyinlow-andmiddle-
incomecountrieswhereinnovativeapproachesto
inclusiveandsustainabledevelopmentaremost
needed.Africarepresentsonly2.5%oftheglobalAI
market,yetrecentestimatessuggestthatAIcould
increaseAfrica’seconomyby$2.9trillionby2030—
theequivalentofincreasingannualGrossDomestic
Product(GDP)growthbythreepercent.9Thisboost
ineconomicgrowthcouldtranslateintosigni?cant
developmentimpactsforthecontinent,providing
employmentopportunitiesandhelpingtoraise
millionsoutofpoverty.
Figure1Figure2
EstimatedannualvalueoftheAI
marketinAfricarelativetotheglobal
market
PotentialvalueaddedbyAItothe
Africaneconomy
($trillion,2024-2030)
($trillion,2023)
6
WithAI
5
$2.9trillion
4
$16.5trillion
GlobalAIvalue
3
WithoutAI
$0.4trillion
AfricanAIvalue
Approx2.5%ofthe
globalAImarket
2
2024202620282030
GDPvaluewithAIGDPvaluewithoutAI
CumulativegainsinGDPaddedbyAI
7Smith,M.&Neupane,S.(2018).Artificialintelligenceandhumandevelopment:Towardaresearchagenda.IDRC.
8Bankhwal,M.etal.(2024).AIforsocialgood:Improvinglivesandprotectingtheplanet.McKinseyDigital.
9AI4DAfrica.(2024).AIinAfrica:Thestateandneedsoftheecosystem.
AIforAfrica:Usecasesdeliveringimpact
8/76
MobileconnectivityinSub-SaharanAfricacontinues
todrivedigitaltransformationandsocioeconomic
advancements.Agrowingproportionofthe
populationisconnectedtoandusingmobile
internet,andsmartphonepenetrationisexpectedto
reach88%by2030,creatingnewopportunitiesfor
digitalinclusionandusageofAI-enabledservices.10
CountriessuchasKenya,NigeriaandSouthAfrica
alreadyhavesomeofthemostadvancedtech
ecosystemsintheregion.Kenyaisparticularly
renownedforpioneeringmobilemoneythrough
M-Pesa,whileNigeriahasproducedseveralAfrican
unicorns.Thesecountriesalsohavetech-related
policiesthathavefosteredarelativelyconducive
environmentforinnovationandentrepreneurship.
Theirsoliddigitalfoundationscanserveasbuilding
blocksforthedevelopment,deploymentand
adoptionofAI.
However,unlockingthepotentialofAIwillrequire
overcomingseveralchallenges.Whilethecoverage
gaphassigni?cantlyreduced,theusagegapin
Sub-SaharanAfricastillstandsat59%,meaning
thatmillionsofpeoplewholivewithinthefootprint
ofamobilebroadbandnetworkarenotusing
mobileinternet.Signi?cantdigitaldividesexistand
disproportionatelya?ectlow-incomegroups,those
whoarelesseducated,ruralpopulationsandwomen,
anddigitalisationandAIriskexacerbatingexisting
socioeconomicinequalities.Kenya,Nigeria,andSouth
Africahavecriticalinfrastructuregapsandundergo
regularpoweroutages.Inaddition,insu?cient
availabilityofdataandlackofdataecosystems,low
levelsofdigitalskillsandliteracy,fragmentedornon-
enforcedpoliciesandnascentresearchcapacities
constitutekeybarriersforthedevelopmentoftheAI
ecosystem.AIalsobringssigni?cantrisksintermsof
dataprivacy,biasanddiscriminationthatneedtobe
addressedtoensuresafeandresponsibleuseofthe
technology.
Whiletherehasbeenanaccelerationoftechnology
companiesleveragingAIandinitiativestodevelop
andpromotetheuseofAIonthecontinent,
thesehavenotnecessarilyfocusedonaddressing
socioeconomicordevelopmentchallenges.Most
existingusecasesaretypicallyfoundinsectorssuch
asITservices,computersoftware,ormanagement
consulting.11Thereisalackoffocusonbuildinglocal,
inclusive,andsustainableAIsolutions12thatcan
helpaddresstheSDGsinAfrica.Thereisapressing
needtoidentifyandtestmodelsandusecasesthat
canaddressdevelopmentchallenges,aretailored
tomeetthespeci?cneedsoflocalcommunities,
andhavethepotentialtobescaledtoamplifytheir
impact.Consideringthediversecontextsandcultures
acrossAfrica,fosteringequitablepartnershipsto
buildAIusecasesfordevelopmentandnurturethe
growthoflocalecosystemswillbecriticaltoharness
thepotentialofAItohelpachievetheSDGsonthe
continent.
10GSMA.(2023).TheMobileEconomySub-SaharanAfrica2023.
11TheAIMediaGroupSouthAfrica.StateofAIinAfricaReport2022.
12Inthisreport,local,inclusiveandsustainableAIsolutionsreferstoAIapplicationsthataretailoredtolocalneedsandconstraintstofosterinclusivityandprioritise
addressingdevelopmentchallengesinlinewiththeSDGs.
AIforAfrica:Usecasesdeliveringimpact
9/76
2.Researchobjectivesand
methodology
AIforAfrica:Usecasesdeliveringimpact
10/76
Researchobjectives
ThisresearchseekstoidentifyAI-enabledusecases
andsolutionsthataddressdevelopmentchallenges
relatedtoagricultureandfoodsecurity,energyand
climateaction.ItfocusesonKenya,Nigeriaand
SouthAfrica,whoarealltechnologyleaderson
thecontinentandintheirsub-region,andpresent
signi?cantpotentialtoleverageAIfordevelopment.
Morespeci?cally,theresearchseeksto:
1.IdentifyAI-enabledusecasesandsolutions
acrosstheselectedsectors,highlighttheirkey
requirementsandassesstheirpotentialforimpact,
scaleandconstraints.
2.ProvidealandscapeoverviewoftheAIecosystem
ineachcountrytoidentifygapsandopportunities
toimprovetheenablingenvironmentand
developmentofAI-enabledusecases.
Toaddresstheobjectivesoftheresearch,we
investigatedthefollowingkeypillarsoftheAI
ecosystemtounderstandhowtheyimpactthe
developmentandscalabilityofusecases:the
digitaleconomyfoundations,encompassingdigital
infrastructure,humancapitalandskills,andpolicy
andregulation;theAIfundamentals,includingdata,
AI-speci?cskills,andcomputecapacity;andcross-
cuttingenablers,suchaspartnerships,?nancing
mechanisms,andresearchanddevelopment.
Whilewehaveseparatedtheenablersofeachmain
pillarinourframework(Figure3)toshowthattheAI
ecosystemsitsontopofabroaderdigital/technology
ecosystem,wehavegroupedtheminthereportas
certainelementssuchasinfrastructure,skillsand
policycanbeunderstoodaspartofaspectrum.
3.O?erasetofrecommendationsforkey
stakeholders,pinpointingwaystocatalysethe
developmentoftheAIecosystemdelivering
impactintheregion.
Figure3
TheAIecosystemframework
i
Partnerships
Financing
mechanisms
Data
Researchand
development
AIfundamentals
ComputeAIskills
Digitaleconomyfoundations
Digital
infrastructure
Humancapital
andskills
Policyand
regulation
AIforAfrica:Usecasesdeliveringimpact
11/76
Thisreportreliesondesk-basedresearchandvalidationthroughdiversestakeholderengagement.
ThemethodologyisoutlinedinTable1.
Table1
Researchmethodology
DatasourceObjective
Desk-basedresearch
Reviewincludedgreyliteratureand
industry-speci?creports,academic
publications,databas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貨運安全教育培訓制度
- 財產調查制度
- 行政審批定崗定責制度
- 用工風險培訓課件內容
- 2026江西省數字產業(yè)集團有限公司中層管理崗位引才1人參考考試題庫附答案解析
- 2026青海海西州中國聯通德令哈市分公司招聘5人參考考試題庫附答案解析
- 2026北京大學新結構經濟學研究院招聘勞動合同制人員1人參考考試題庫附答案解析
- 2026廣西來賓市第一批“服務產業(yè)發(fā)展專項人才計劃”29人備考考試試題附答案解析
- 2026年度青島市市南區(qū)所屬事業(yè)單位公開招聘工作人員(25名)參考考試試題附答案解析
- 2026山東臨沂沂河新區(qū)部分事業(yè)單位招聘綜合類崗位工作人員3人備考考試試題附答案解析
- 2025年中國低氘水行業(yè)市場全景分析及前景機遇研判報告
- 鋼架樓梯合同(標準版)
- 管道區(qū)段長管理辦法
- 2025年江西公務員考試(財經管理)測試題及答案
- CRT-YS4690消防控制室圖形顯示裝置使用說明書-營口賽福德
- 植筋工程施工驗收記錄表范例
- 2025至2030年中國冷凍食品行業(yè)市場調研及行業(yè)投資策略研究報告
- 壓空罐安全知識培訓課件
- 2025年江蘇南京市建鄴區(qū)招聘第一批購崗人員5人筆試模擬試題及答案詳解1套
- 市場保潔管理方案(3篇)
- 醫(yī)院調料雜糧副食品采購項目方案投標文件(技術方案)
評論
0/150
提交評論