廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題含解析_第1頁
廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題含解析_第2頁
廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題含解析_第3頁
廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題含解析_第4頁
廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市紅嶺中學2025屆高二上數(shù)學期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.2.下列橢圓中,焦點坐標是的是()A. B.C. D.3.已知直線與拋物線C:相交于A,B兩點,O為坐標原點,,的斜率分別為,,則()A. B.C. D.4.從裝有2個紅球和2個白球的口袋內任取兩個球,則下列選項中的兩個事件為互斥事件的是()A.至多有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;都是紅球 D.至多有1個白球;至多有1個紅球5.在直三棱柱中,,且,點是棱上的動點,則點到平面距離的最大值是()A. B.C.2 D.6.已知定義在上的函數(shù)滿足:,且,則的解集為()A. B.C. D.7.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.8.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.9.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.210.已知兩直線與,則與間的距離為()A. B.C. D.11.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長等于()A. B.2C.2 D.412.已知數(shù)列通項公式,則()A.6 B.13C.21 D.31二、填空題:本題共4小題,每小題5分,共20分。13.空間四邊形中,,,,,,,則與所成角的余弦值等于___________14.拋物線的焦點到準線的距離是______.15.已知橢圓的兩個焦點分別為,,,點在橢圓上,若,且的面積為4,則橢圓的標準方程為______16.如圖,在正四棱錐中,為棱PB的中點,為棱PD的中點,則棱錐與棱錐的體積之比為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列的前n項和為,且,數(shù)列(1)求和的通項公式;(2)設數(shù)列的前n項和為,證明:18.(12分)設:實數(shù)滿足,:實數(shù)滿足(1)當時,若與均為真命題,求實數(shù)的取值范圍;(2)當時,若是的必要條件,求實數(shù)的取值范圍19.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點,,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值21.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個拱形橋架緊密相連,每個橋架的內部有一個水平橫梁和八個與橫梁垂直的立柱,氣勢宏偉,素有“天下黃河第一橋”之稱.如圖②,一個拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標系,已知,,,,立柱.(1)求立柱及橫梁的長;(2)求拋物線的方程和橋梁的拱高.22.(10分)已知橢圓的離心率為,右焦點到上頂點的距離為.(1)求橢圓的方程;(2)斜率為2的直線經(jīng)過橢圓的左焦點,且與橢圓相交于兩點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A2、B【解析】根據(jù)給定條件逐一分析各選項中的橢圓焦點即可判斷作答.【詳解】對于A,橢圓的焦點在x軸上,A不是;對于B,橢圓,即,焦點在y軸上,半焦距,其焦點為,B是;對于C,橢圓,即,焦點在y軸上,半焦距,其焦點為,C不是;對于D,橢圓,即,焦點在y軸上,半焦距,其焦點為,D不是.故選:B3、C【解析】設,,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設,,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關系,直線的斜率公式,考查了轉化與化歸的思想,考查了學生的運算求解能力.4、C【解析】根據(jù)試驗過程進行分析,利用互斥事件的定義對四個選項一一判斷即可.【詳解】對于A:“至多有1個白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個白球”與“都是紅球”不是互斥事件.故A錯誤;對于B:“至少有1個白球”包含都是白球和一紅一白,“至少有1個紅球”包含都是紅球和一紅一白,所以“至少有1個白球”與“至少有1個紅球”不是互斥事件.故B錯誤;對于C:“恰好有1個白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個白球”與“都是紅球”是互斥事件.故C錯誤;對于D:“至多有1個紅球”包含都是白球和一紅一白,“至多有1個白球”包含都是紅球和一紅一白,所以“至多有1個白球”與“至多有1個紅球”不是互斥事件.故D錯誤.故選:C5、D【解析】建立空間直角坐標系,設出點的坐標,運用點到平面的距離公式,求出點到平面距離的最大值.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,設點,故,,.設設平面的法向量為,則即,取,則.所以點到平面距離.當,即時,距離有最大值為.故選:D.【點睛】本題考查空間內點到面的距離最值問題,屬于中檔題.6、A【解析】令,利用導數(shù)可判斷其單調性,從而可解不等式.【詳解】設,則,故為上的增函數(shù),而可化為即,故即,所以不等式的解集為,故選:A.7、B【解析】首先由點的坐標滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關系轉化為斜率關系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.8、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.9、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.10、B【解析】把直線的方程化簡,再利用平行線間距離公式直接計算得解.【詳解】直線的方程化為:,顯然,,所以與間的距離為.故選:B11、B【解析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長:.故選B.點睛:本題考查圓的標準方程以及直線和圓的位置關系.判斷直線與圓的位置關系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉化為一元二次方程,該方程解的情況即對應直線與圓的位置關系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關系,但是計算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關系.這種方法的特點是計算量較?。斨本€與圓相交時,可利用垂徑定理得出圓心到直線的距離,弦長和半徑的勾股關系.12、C【解析】令即得解.【詳解】解:令得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計算出的值,利用空間向量的數(shù)量積可得出的值,即可得解.【詳解】,,所以,,所以,.所以,與所成角的余弦值為.故答案為:.14、4【解析】由y2=2px=8x知p=4,又焦點到準線的距離就是p,所以焦點到準線的距離為4.15、【解析】由題意得到為直角三角形.設,,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設,,則解得所以橢圓的標準方程為16、【解析】根據(jù)圖形可求出與棱錐的體積之比,即可求出結果【詳解】如圖所示:棱錐可看成正四棱錐減去四個小棱錐的體積得到,設正四棱錐的體積為,為PB的中點,為PD的中點,所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當時,,當時,,∴,經(jīng)檢驗,也符合,∴,;【小問2詳解】證明:因為,∴,∴∴,又∵,∴,所以18、(1);(2).【解析】(1)將代入,解一元二次不等式求兩集合的交集即可求解.(2)求出:,根據(jù)題意可得轉化為集合的包含關系即可求解.【詳解】(1)當時,:,:或.因為,中都是真命題.所以所以實數(shù)的取值范圍是;(2)當時,:,:或,所以:,因為是的必要條件,所以,所以,解得,所以實數(shù)的取值范圍是.19、(1)見解析;(2)【解析】(1)取中點,連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點,根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標系,如圖所示:則∴,設平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20、(1)證明見解析(2)【解析】(1)通過作輔助線,構造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標系,求出相應點的坐標,進而求得相關的向量坐標,求出平面EAC與平面PAC的法向量,根據(jù)向量的夾角公式求得答案.【小問1詳解】證明:取PA的中點F,由E為PB的中點,則,,而,,所以且,則四邊形CDFE為平行四邊形,所以,又平面PAD,平面PAD,所以平面PAD【小問2詳解】∵平面ABCD,,∴AP,AB,AD兩兩垂直,以A為原點,,,向量方向分別為x軸,y軸,z軸建立如圖所示空間直角坐標系,各點坐標如下:,,,,,設平面APC的法向量為,由,,有,取,則,,即,設平面EAC的法向量為,由,,有,取,則,,即,所以,由原圖可知平面EAC與平面PAC夾角為銳角,所以平面EAC與平面PAC夾角的余弦值為21、(1),(2),【解析】(1)根據(jù)梯形的幾何性質,即可求解;(2)表示出M,N的坐標,代入拋物線方程中,結合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因為ABFM是等腰梯形,由對稱性知:,所以,【小問2詳解】由(1)知,所以點M的橫坐標為-18,則N的橫坐標為-(18-5)=-13.設點M,N的縱坐標分別為y1,y2,由圖形,知設拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論