版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省黃岡市浠水實(shí)驗(yàn)高中高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的焦點(diǎn)為、,上頂點(diǎn)為,若,則()A B.C. D.2.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對(duì)相關(guān)曲線.已知,是一對(duì)相關(guān)曲線的焦點(diǎn),Р是這對(duì)相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定3.已知平面內(nèi)有一點(diǎn),平面的一個(gè)法向量為,則下列四個(gè)點(diǎn)中在平面內(nèi)的是()A. B.C. D.4.()A.-2 B.0C.2 D.35.已知點(diǎn)是拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,則的最小值為()A. B.C. D.6.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.5 B.10C.4 D.7.已知數(shù)列為等比數(shù)列,若,,則的值為()A.8 B.C.16 D.±168.某中學(xué)的校友會(huì)為感謝學(xué)校的教育之恩,準(zhǔn)備在學(xué)校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個(gè)正四棱錐,已知此正四棱錐的側(cè)面與底面所成的二面角為30°,側(cè)棱長(zhǎng)為米,則以下說法不正確()A.底面邊長(zhǎng)為6米 B.體積為立方米C.側(cè)面積為平方米 D.側(cè)棱與底面所成角的正弦值為9.若,則()A.22 B.19C.-20 D.-1910.若函數(shù)在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B.C. D.11.雙曲線的左、右焦點(diǎn)分別為、,過點(diǎn)且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點(diǎn),若,則雙曲線C的離心率為()A. B.C. D.12.如圖,在正方體中,()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為____________14.已知函數(shù),若在定義域內(nèi)有兩個(gè)零點(diǎn),那么實(shí)數(shù)a的取值范圍為___________.15.寫出一個(gè)離心率且焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程________,并寫出該雙曲線的漸近線方程________16.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,當(dāng)以為始邊,為終邊的角時(shí),.(1)求的方程(2)過點(diǎn)的直線交于兩點(diǎn),以為直徑的圓平行于軸的直線相切于點(diǎn),線段交于點(diǎn),求的面積與的面積的比值18.(12分)如圖甲是由正方形,等邊和等邊組成的一個(gè)平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點(diǎn),且三棱錐和的體積比為,求直線與平面所成角的正弦值.19.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值20.(12分)已知函數(shù).(1)記函數(shù),當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個(gè)不同的零點(diǎn),證明:為自然對(duì)數(shù)的底數(shù)).21.(12分)已知等比數(shù)列的公比,且,是的等差中項(xiàng).數(shù)列的前n項(xiàng)和為,滿足,.(1)求和的通項(xiàng)公式;(2)設(shè),求的前2n項(xiàng)和.22.(10分)已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=(n∈N*).(1)證明:數(shù)列是等比數(shù)列;(2)設(shè)bn=-,求數(shù)列{bn}的前n項(xiàng)和Sn.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析出為等邊三角形,可得出,進(jìn)而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因?yàn)闄E圓的上頂點(diǎn)為點(diǎn),焦點(diǎn)為、,所以,,為等邊三角形,則,即,因此,.故選:C.2、A【解析】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.3、A【解析】設(shè)所求點(diǎn)的坐標(biāo)為,由,逐一驗(yàn)證選項(xiàng)即可【詳解】設(shè)所求點(diǎn)的坐標(biāo)為,則,因?yàn)槠矫娴囊粋€(gè)法向量為,所以,,對(duì)于選項(xiàng)A,,對(duì)于選項(xiàng)B,,對(duì)于選項(xiàng)C,,對(duì)于選項(xiàng)D,故選:A4、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C5、C【解析】分析可知圓的圓心為拋物線的焦點(diǎn),可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點(diǎn)坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.6、A【解析】利用等比數(shù)列的性質(zhì)及對(duì)數(shù)的運(yùn)算性質(zhì)求解.【詳解】由題有,則=5.故選:A7、A【解析】利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)的公比為,則,,兩式相除可得,所以,所以,故選:A.8、D【解析】連接底面正方形的對(duì)角線交于點(diǎn),連接,則為該正四棱錐的高,即平面,取的中點(diǎn),連接,則的大小為側(cè)面與底面所成,設(shè)正方形的邊長(zhǎng)為,求出該正四棱錐的底面邊長(zhǎng),斜高和高,然后對(duì)選項(xiàng)進(jìn)行逐一判斷即可.【詳解】連接底面正方形的對(duì)角線交于點(diǎn),連接則為該正四棱錐的高,即平面取的中點(diǎn),連接,由正四棱錐的性質(zhì),可得由分別為的中點(diǎn),所以,則所以為二面角的平面角,由條件可得設(shè)正方形的邊長(zhǎng)為,則,又則,解得故選項(xiàng)A正確.所以,則該正四棱錐的體積為,故選項(xiàng)B正確.該正四棱錐的側(cè)面積為,故選項(xiàng)C正確.由題意為側(cè)棱與底面所成角,則,故選項(xiàng)D不正確.故選:D9、C【解析】將所求進(jìn)行變形可得,根據(jù)二項(xiàng)式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C10、A【解析】由函數(shù)在上單調(diào)遞增,可得,從而可求出實(shí)數(shù)的取值范圍【詳解】由,得,因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立,即恒成立,因?yàn)?,所以,所以,所以?shí)數(shù)的取值范圍為,故選:A11、C【解析】由,且,可得,再結(jié)合,可得,進(jìn)而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因?yàn)?,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因?yàn)?,所?故選:C.【點(diǎn)睛】方法點(diǎn)睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關(guān)系,利用求解;(2)根據(jù)條件列出的齊次方程,利用轉(zhuǎn)化為關(guān)于的方程,解方程即可,注意根據(jù)對(duì)所得解進(jìn)行取舍.12、B【解析】根據(jù)正方體的性質(zhì),結(jié)合向量加減法的幾何意義有,即可知所表示的向量.【詳解】∵,而,∴,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長(zhǎng)為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因?yàn)辄c(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因?yàn)榍遥运倪呅问瞧叫兴倪呅?,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長(zhǎng)為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時(shí),取得最小值,最小值為,當(dāng)或時(shí),取得最大值,最大值為故答案為14、【解析】先求定義域,再求導(dǎo),針對(duì)分類討論,結(jié)合單調(diào)性,極值,最值得到,研究其單調(diào)性及其零點(diǎn),求出結(jié)果.【詳解】定義域?yàn)椋?,?dāng)時(shí),恒成立,在單調(diào)遞減,不會(huì)有兩個(gè)零點(diǎn),故舍去;當(dāng)時(shí),在上,單調(diào)遞增,在上,單調(diào)遞減,故,又因?yàn)闀r(shí),,時(shí),,故要想在定義域內(nèi)有兩個(gè)零點(diǎn),則,令,,,單調(diào)遞增,又,故當(dāng)時(shí),.故答案為:15、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個(gè)符合要求的雙曲線方程,進(jìn)而寫出對(duì)應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個(gè)標(biāo)準(zhǔn)方程,此時(shí)漸近線方程為.故答案為:,(答案不唯一).16、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因?yàn)橐阎獌芍本€平行,所以,解得故答案為:【點(diǎn)睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時(shí),用表示容易理解與記憶三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,根據(jù)拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據(jù),求得,設(shè),得到,進(jìn)而求得,因?yàn)闉榈闹悬c(diǎn),求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準(zhǔn)線方程,如圖所示,過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,因?yàn)闀r(shí),,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設(shè),因?yàn)橹本€的直線過點(diǎn),設(shè)直線的方程為聯(lián)立方程組,整理得,可得,則,因?yàn)闉榈闹悬c(diǎn),所以,由拋物線的定義得,設(shè)圓與直線相切于點(diǎn),因?yàn)榻挥邳c(diǎn),所以且,所以,即,解得,設(shè),則,且,可得,因?yàn)?,所以點(diǎn)為的中點(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),可得,所以,即的面積與的面積的比值為.18、(1)證明見解析;(2).【解析】(1)取的中點(diǎn)為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對(duì)應(yīng)點(diǎn)的坐標(biāo)和向量的坐標(biāo),再計(jì)算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點(diǎn)為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標(biāo)系,根據(jù)邊長(zhǎng)關(guān)系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設(shè)平面的法向量為,則,令,得.設(shè)直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點(diǎn)睛】方法點(diǎn)睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過等體積法間接求點(diǎn)到面的距離,距離與斜線長(zhǎng)的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對(duì)值,即是線面成角的正弦值.19、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為20、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對(duì)導(dǎo)數(shù)化簡(jiǎn)整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個(gè)不同的零點(diǎn),將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因?yàn)?,所以,令,得?所以時(shí),或;時(shí),.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因?yàn)椋?當(dāng)時(shí),,可得在上單調(diào)遞減,此時(shí)不可能存在兩個(gè)不同的零點(diǎn),不符合題意.當(dāng)時(shí),.令,得.當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,在上單調(diào)遞減.而當(dāng)時(shí),,時(shí),.所以要使存在兩個(gè)不同的零點(diǎn),則,即,解得.因?yàn)榇嬖趦蓚€(gè)不同的零點(diǎn),則,即.不妨設(shè),則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點(diǎn)點(diǎn)睛】解決本題的第(1)問的關(guān)鍵是對(duì)導(dǎo)函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運(yùn)用,四是換元思想的運(yùn)用.21、(1),()(2)【解析】(1)等差數(shù)列和等比數(shù)列的基本量的計(jì)算,根據(jù)條件列出方程,并解方程即可;(2)數(shù)列根據(jù)的奇偶分段表示,奇數(shù)項(xiàng)通過乘公比錯(cuò)位相減法克求得前項(xiàng)和,偶數(shù)項(xiàng)則是通過裂項(xiàng)求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當(dāng)時(shí),,當(dāng)時(shí),,經(jīng)檢驗(yàn),時(shí),適合上式,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年朔州職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)帶答案詳解
- 2026年山西省朔州市單招職業(yè)傾向性測(cè)試題庫(kù)及答案詳解一套
- 2026年通化醫(yī)藥健康職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)帶答案詳解
- 西城社工面試題目及答案
- 護(hù)理醫(yī)生面試題目及答案
- 公司搬遷員工補(bǔ)償協(xié)議書范本
- 2025年湖北文旅資本控股有限公司招聘?jìng)淇碱}庫(kù)及參考答案詳解
- 2025年江西省適航技術(shù)服務(wù)中心有限公司勞務(wù)派遣招聘?jìng)淇碱}庫(kù)附答案詳解
- 2025年西安市灞橋區(qū)中醫(yī)醫(yī)院腦病科康復(fù)治療師招聘?jìng)淇碱}庫(kù)參考答案詳解
- 2025年廈門實(shí)驗(yàn)中學(xué)招聘頂崗教師的備考題庫(kù)及一套答案詳解
- 2025下半年貴州遵義市市直事業(yè)單位選調(diào)56人筆試考試參考題庫(kù)及答案解析
- 2025鄂爾多斯達(dá)拉特旗第二批事業(yè)單位引進(jìn)28名高層次、急需緊缺人才考試筆試模擬試題及答案解析
- 甲狀腺癌放射性碘抵抗機(jī)制研究
- 門窗的代理合同范本
- 集裝箱裝卸協(xié)議合同
- 2025河北交通職業(yè)技術(shù)學(xué)院第二次招聘47人參考筆試試題及答案解析
- 2025年秋國(guó)家開放大學(xué)《思想道德與法治》終考大作業(yè)試卷一附答案【供參考】
- 20252025年(完整版)三級(jí)安全教育真題試卷含答案
- 人教版2025-2026學(xué)年八年級(jí)上冊(cè)數(shù)學(xué)期末考試模擬試卷
- 2025商洛市直機(jī)關(guān)事業(yè)單位遴選(選調(diào))(59人)(公共基礎(chǔ)知識(shí))測(cè)試題附答案解析
- 會(huì)計(jì)從業(yè)人員職業(yè)道德規(guī)范培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論