版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省撫順十中2024屆第五次月考高三數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.已知,則()A. B. C. D.3.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.4.在等差數列中,若,則()A.8 B.12 C.14 D.105.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.6.函數的圖像大致為().A. B.C. D.7.的展開式中,項的系數為()A.-23 B.17 C.20 D.638.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.9.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.10.若直線l不平行于平面α,且l?α,則()A.α內所有直線與l異面B.α內只存在有限條直線與l共面C.α內存在唯一的直線與l平行D.α內存在無數條直線與l相交11.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.12.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.14.實數,滿足,如果目標函數的最小值為,則的最小值為_______.15.已知若存在,使得成立的最大正整數為6,則的取值范圍為________.16.函數的極大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.18.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.19.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.20.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.21.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數m,都有,并證明你的結論.22.(10分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.2、B【解析】
利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.3、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.4、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.5、D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.6、A【解析】
本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.7、B【解析】
根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.8、B【解析】
求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解析】
根據底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.10、D【解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關系,直線與直線的位置關系,難度不大.11、C【解析】
設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.12、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.14、【解析】
作出不等式組對應的平面區(qū)域,利用目標函數的最小值為,確定出的值,進而確定出C點坐標,結合目標函數幾何意義,從而求得結果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內,由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標函數在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為.等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據最值求出參數,結合分式型目標函數的意義求得最優(yōu)解,屬于中檔題目.15、【解析】
由題意得,分類討論作出函數圖象,求得最值解不等式組即可.【詳解】原問題等價于,當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;當時,函數圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點睛】本題主要考查了對勾函數的圖象與性質,函數的最值求解,存在性問題的求解等,考查了分類討論,轉化與化歸的思想.16、【解析】
對函數求導,根據函數單調性,即可容易求得函數的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【點睛】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數的基本關系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設點,由得:,即,,,點,平面的一個法向量,又,,設平面的一個法向量為,則,令,則平面的一個法向量為.設二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關系的轉化.空間中的角的計算,可以建立空間直角坐標系把角的計算歸結為向量的夾角的計算,也可以構建空間角,把角的計算歸結平面圖形中的角的計算.18、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式的證明,考查不等式的性質的應用.19、(1):,直線:;(2).【解析】
(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.20、(1)(2)【解析】
(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.21、(1);(2)存在,Q為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鄭州亞歐交通職業(yè)學院中單招綜合素質考試題庫帶答案詳解
- 2026年武漢城市職業(yè)學院單招職業(yè)技能測試題庫附答案詳解
- 2026年河北省保定市單招職業(yè)適應性測試題庫參考答案詳解
- 2026年蘇州百年職業(yè)學院中單招職業(yè)技能測試題庫及完整答案詳解1套
- 2026年黑龍江交通職業(yè)技術學院單招職業(yè)適應性測試題庫及參考答案詳解1套
- 2026年泉州工藝美術職業(yè)學院單招職業(yè)適應性考試題庫參考答案詳解
- 2026年石家莊理工職業(yè)學院單招職業(yè)傾向性考試題庫及參考答案詳解
- 2026年青島求實職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案詳解
- 2026年江蘇省南通市單招職業(yè)適應性測試題庫含答案詳解
- 2026年江西機電職業(yè)技術學院單招職業(yè)技能考試題庫附答案詳解
- 2025年人工智能訓練師(三級)職業(yè)技能鑒定理論考試題庫(含答案)
- 2025北京八年級(上)期末語文匯編:名著閱讀
- 小學美術教育活動設計
- 蜜雪冰城轉讓店協議合同
- 貸款項目代理協議書范本
- 低分子肝素鈉抗凝治療
- 重慶城市科技學院《電路分析基礎》2023-2024學年第二學期期末試卷
- 2025年國家開放大學管理英語3作業(yè)答案
- 乳腺癌全程、全方位管理乳腺癌患者依從性及心理健康管理幻燈
- 2024-2025學年福建省三明市高二上冊12月月考數學檢測試題(附解析)
- 海運貨物運輸方案
評論
0/150
提交評論