2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題含解析_第1頁
2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題含解析_第2頁
2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題含解析_第3頁
2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題含解析_第4頁
2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省徐州市銅山區(qū)高二上數學期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓相切,則實數等于()A.或 B.或C.3或5 D.5或32.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.3.已知函數在上單調遞增,則實數a的取值范圍為()A. B.C. D.4.內角A,B,C的對邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形5.一盒子里有黑色、紅色、綠色的球各一個,現從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件6.已知等差數列,若,,則()A.1 B.C. D.37.若(為虛數單位),則復數在復平面內的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知等差數列前項和為,且,,則此數列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項9.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高二被抽取的人數為人,那么高三被抽取的人數為()A. B.C. D.10.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)11.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條12.若雙曲線(,)的一條漸近線經過點,則雙曲線的離心率為()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知向量是直線l的一個方向向量,向量是平面的一個法向量,若直線平面,則實數m的值為______14.已知直線與直線垂直,則實數的值為___________.15.在中,,是線段上的點,,若的面積為,當取到最大值時,___________.16.已知空間向量,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設等差數列的前項和為,已知,.(1)求數列的通項公式;(2)求數列的前項和.18.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.19.(12分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數k的取值范圍.20.(12分)已知三角形內角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.21.(12分)我們知道:當是圓O:上一點,則圓O的過點的切線方程為;當是圓O:外一點,過作圓O的兩條切線,切點分別為,則方程表示直線AB的方程,即切點弦所在直線方程.請利用上述結論解決以下問題:已知圓C的圓心在x軸非負半軸上,半徑為3,且與直線相切,點在直線上,過點作圓C的兩條切線,切點分別為.(1)求圓C的方程;(2)當時,求線段AB的長;(3)當點在直線上運動時,求線段AB長度的最小值.22.(10分)有1000人參加了某次垃圾分類知識競賽,從中隨機抽取100人,將這100人的此次競賽的分數分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下頻率分布直方圖.(1)求圖中a的值;(2)估計總體1000人中競賽分數不少于70分的人數;(3)假設同組中的每個數據都用該組區(qū)間的中點值代替,估計總體1000人的競賽分數的平均數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C2、C【解析】利用橢圓和雙曲線的性質,用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當且僅當時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質,用橢圓雙曲線的焦距長軸長表示是解題的關鍵,意在考查學生的計算能力3、D【解析】根據題意參變分離得到,求出的最小值,進而求出實數a的取值范圍.【詳解】由題意得:在上恒成立,即,其中在處取得最小值,,所以,解得:,故選:D4、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C5、A【解析】根據事件的關系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎題.6、C【解析】利用等差數列的通項公式進行求解.【詳解】設等差數列的公差為,因為,,所以,解得.故選:C.7、A【解析】根據復數運算法則求出z=a+bi形式,根據復數的幾何意義即可求解.【詳解】,z對應的點在第一象限.故選:A8、C【解析】設等差數列的首項為,公差為,,則,又,則,說明數列為遞減數列,前6項為正,第7項及后面的項為負,又,則,則在數列中絕對值最小的項為,選C.9、C【解析】利用分層抽樣求出的值,進而可求得高三被抽取的人數.【詳解】由分層抽樣可得,可得,設高三所抽取的人數為,則,解得.故選:C.10、B【解析】根據空間向量線性運算的坐標表示即可得出答案.【詳解】解:因為,,所以.故選:B.11、C【解析】根據直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.12、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】由已知可得,即,計算即可得出結果.【詳解】因為是直線的一個方向向量,是平面的一個法向量,且直線平面,所以,所以,解得.故答案為:-2.14、【解析】由直線垂直的充要條件列式計算即可得答案.【詳解】解:因為直線與直線垂直,所以,解得故答案為:15、【解析】由三角形面積公式得出,設,由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設,則,可得,由基本不等式可得,當且僅當時,取得最大值,,,由余弦定理得,解得.故答案為【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.16、2【解析】依據向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據已知條件求得等差數列的首項和公差,由此求得.(2)利用裂項求和法求得.【小問1詳解】設等差數列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.18、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結合面面垂直的性質定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q的真假,再利用復合命題的真假判斷;(2)根據命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對于命題p,易知直線與雙曲線的左、右支各有一個交點,∴命題p為假命題;對于命題q,時,有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對于命題p,由得,直線與雙曲線的右支有兩個不同的交點,即此方程有兩個不同的正根,∴得.對于命題q,要使命題q為真,則,解得,∴命題q為假命題,即.∴實數k的取值范圍為.20、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=21、(1);(2);(3)4.【解析】(1)根據圓圓心和半徑設圓的標準方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據題意寫出AB的方程,根據垂徑定理即可求出弦長;(3)根據題意求出AB經過的定點Q,當CQ垂直于AB時,AB最短.【小問1詳解】由題,設圓C的標準方程為,則,解得.故圓C方程為;【小問2詳解】根據題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長;【小問3詳解】設,則,又直線方程為:,故直線過定點Q,設圓心C到直線距離為,則,故當最大時,最短,而,故與垂直時最大,此時,,∴線段長度的最小值4.22、(1)0.040;(2)750;(3)76.5.【解析】(1)由頻率分布直方圖的性質列出方程,能求出圖中的值;(2)先求出競賽分數不少于70

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論