云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省賓川縣2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實(shí)數(shù)a的取值范圍為()A. B.C. D.2.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離3.拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P是準(zhǔn)線l上的動(dòng)點(diǎn),若點(diǎn)A在拋物線C上,且,則(O為坐標(biāo)原點(diǎn))的最小值為()A. B.C. D.4.兩條平行直線與之間的距離為()A. B.C. D.5.設(shè)函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.設(shè)雙曲線:的左,右焦點(diǎn)分別為,,過(guò)的直線與雙曲線的右支交于A,B兩點(diǎn),若,則雙曲線的離心率為()A.4 B.2C. D.7.在中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.28.定義在區(qū)間上的函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列結(jié)論不正確的是()A.函數(shù)在區(qū)間上單調(diào)遞增 B.函數(shù)在區(qū)間上單調(diào)遞減C.函數(shù)在處取得極大值 D.函數(shù)在處取得極小值9.傳說(shuō)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.10.過(guò)雙曲線(,)的左焦點(diǎn)作圓:的兩條切線,切點(diǎn)分別為,,雙曲線的左頂點(diǎn)為,若,則雙曲線的漸近線方程為()A. B.C. D.11.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為4的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.12.下列說(shuō)法正確的是()A.空間中的任意三點(diǎn)可以確定一個(gè)平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個(gè)平面D.正四棱柱的側(cè)面都是正方形二、填空題:本題共4小題,每小題5分,共20分。13.若圓的一條直徑的端點(diǎn)是、,則此圓的方程是_______14.圓錐曲線有良好的光學(xué)性質(zhì),光線從橢圓的一個(gè)焦點(diǎn)發(fā)出,被橢圓反射后會(huì)經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn)(如左圖);光線從雙曲線的一個(gè)焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實(shí)線)圍成.光線從橢圓C1上一點(diǎn)P0出發(fā),經(jīng)過(guò)點(diǎn)F2,然后在曲線E內(nèi)多次反射,反射點(diǎn)依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過(guò)的路程為_________.15.過(guò)拋物線的焦點(diǎn)的直線交拋物線于點(diǎn)、,且點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn),則的面積為___________.16.若展開式的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:的左,右頂點(diǎn)分別為A、B,點(diǎn)F是橢圓的右焦點(diǎn),,(1)求橢圓C的方程;(2)不過(guò)點(diǎn)A的直線l交橢圓C于M、N兩點(diǎn),記直線l、AM、AN的斜率分別為k、、.若,證明直線l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo)18.(12分)已知橢圓的左右焦點(diǎn)分別為,,經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于A,B兩點(diǎn)(異于左右頂點(diǎn))(1)求△的周長(zhǎng);(2)求橢圓E上的點(diǎn)到直線距離的最大值19.(12分)已知圓C:(1)若過(guò)點(diǎn)的直線l與圓C相交所得的弦長(zhǎng)為,求直線l的方程;(2)若P是直線:上的動(dòng)點(diǎn),PA,PB是圓C的兩條切線,A,B是切點(diǎn),求四邊形PACB面積的最小值20.(12分)過(guò)原點(diǎn)O的圓C,與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B(0,2)(1)求圓C的標(biāo)準(zhǔn)方程;(2)直線l過(guò)B點(diǎn)與圓C相切,求直線l的方程,并化為一般式21.(12分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)左焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),的周長(zhǎng)為8(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)如圖,,是橢圓C的短軸端點(diǎn),P是橢圓C上異于點(diǎn),的動(dòng)點(diǎn),點(diǎn)Q滿足,,求證與的面積之比為定值22.(10分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖觀察散點(diǎn)圖,兩個(gè)變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.001),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長(zhǎng)期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,若非原料成本y在之外,說(shuō)明該成本異常,并稱落在之外的成本為異樣成本,此時(shí)需尋找出現(xiàn)異樣成本的原因.利用估計(jì)值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,相關(guān)系數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因?yàn)椋运钥傻迷谏虾愠闪?,即在上恒成立,故只需,,?dāng)時(shí),,故故選:B2、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標(biāo)為,半徑,由得圓心坐標(biāo)為,半徑,∴,,∴,即兩圓相交.故選:B.3、D【解析】依題意得點(diǎn)坐標(biāo),作點(diǎn)關(guān)于的對(duì)稱點(diǎn),則,求即為最小值【詳解】如圖所示:作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,設(shè)點(diǎn),不妨設(shè),由題意知,直線l方程為,則,得所以,得,所以由,當(dāng)三點(diǎn)共線時(shí)取等號(hào),又所以最小值為故選:D4、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點(diǎn)睛:本題主要考查兩平行直線間的距離公式,屬于易錯(cuò)題.在用兩平行直線距離公式時(shí),兩直線中的系數(shù)要相同,不然不能用此公式計(jì)算5、B【解析】分析可知,對(duì)任意的恒成立,由參變量分離法可得出,求出在時(shí)的取值范圍,即可得出實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知對(duì)任意的恒成立,則對(duì)任意的恒成立,當(dāng)時(shí),,.故選:B.6、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計(jì)算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B7、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計(jì)算可得;【詳解】解:因?yàn)?,又,所以,因?yàn)椋?,所以,因?yàn)椋?,即,所以或,即或(舍去),所以,因?yàn)椋?,所以;故選:C8、C【解析】根據(jù)函數(shù)的單調(diào)性和函數(shù)的導(dǎo)數(shù)的值的正負(fù)的關(guān)系,可判斷A,B的結(jié)論;根據(jù)函數(shù)的極值點(diǎn)和函數(shù)的導(dǎo)數(shù)的關(guān)系可判斷、的結(jié)論【詳解】函數(shù)在上,故函數(shù)在上單調(diào)遞增,故正確;根據(jù)函數(shù)的導(dǎo)數(shù)圖象,函數(shù)在時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,故正確;由A的分析可知函數(shù)在上單調(diào)遞增,故不是函數(shù)的極值點(diǎn),故錯(cuò)誤;根據(jù)函數(shù)的單調(diào)性,在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)處取得極小值,故正確,故選:9、D【解析】根據(jù)前三個(gè)五邊形數(shù)可推斷出第四個(gè)五邊形數(shù).【詳解】第一個(gè)五邊形數(shù)為,第二個(gè)五邊形數(shù)為,第三個(gè)五邊形數(shù)為,故第四個(gè)五邊形數(shù)為.故選:D.10、C【解析】根據(jù),,可以得到,從而得到與的關(guān)系式,再由,,的關(guān)系,進(jìn)而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因?yàn)殡p曲線的漸近線方程為,即為故選:C11、C【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為4的正方形,,∴,,,因?yàn)?,且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:C.12、C【解析】根據(jù)立體幾何相關(guān)知識(shí)對(duì)各選項(xiàng)進(jìn)行判斷即可.【詳解】對(duì)于A,根據(jù)公理2及推論可知,不共線的三點(diǎn)確定一個(gè)平面,故A錯(cuò)誤;對(duì)于B,在一個(gè)平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯(cuò)誤;對(duì)于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個(gè)平面,故C正確;對(duì)于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯(cuò)誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設(shè)圓上任意一點(diǎn)的坐標(biāo),然后利用直徑對(duì)應(yīng)的圓周角為直角,再利用向量垂直建立方程即可【詳解】設(shè)圓上任意一點(diǎn)的坐標(biāo)為可得:,則有:,即解得:故答案為:14、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學(xué)性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點(diǎn)重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:15、##【解析】不妨設(shè)點(diǎn)為第一象限內(nèi)的點(diǎn),求出點(diǎn)的坐標(biāo),可求得直線、的方程,求出點(diǎn)、的坐標(biāo),可求得以及點(diǎn)到直線的距離,利用三角形的面積公式可求得的面積.【詳解】不妨設(shè)點(diǎn)為第一象限內(nèi)的點(diǎn),設(shè)點(diǎn),其中,則,可得,即點(diǎn),拋物線的焦點(diǎn)為,,所以,直線的方程為,聯(lián)立,解得或,即點(diǎn),所以,,直線的方程為,拋物線的準(zhǔn)線方程為,聯(lián)立,可得點(diǎn),點(diǎn)到直線的距離為,因此,.故答案為:.16、【解析】首先利用展開式的二項(xiàng)式系數(shù)和是求出,然后即可求出二項(xiàng)式的常數(shù)項(xiàng).【詳解】由題知展開式的二項(xiàng)式系數(shù)之和是,故有,可得,知當(dāng)時(shí)有.故展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查了利用二項(xiàng)式的系數(shù)和求參數(shù),求二項(xiàng)式的常數(shù)項(xiàng),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見解析,(-5,0).【解析】(1)寫出A、B、F的坐標(biāo),求出向量坐標(biāo),根據(jù)向量的關(guān)系即可列出方程組,求得a、b、c和橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=kx+m,,.聯(lián)立直線l與橢圓方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出,根據(jù)即可求得k和m的關(guān)系,即可證明直線過(guò)定點(diǎn)并求出該定點(diǎn).【小問(wèn)1詳解】由題意,知A(-a,0),B(a,0),F(xiàn)(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問(wèn)2詳解】設(shè)直線l的方程為y=kx+m,,∵直線l不過(guò)點(diǎn)A,因此-2k+m≠0由得時(shí),,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過(guò)定點(diǎn)(-5,0).18、(1);(2).【解析】(1)利用橢圓的定義求△的周長(zhǎng);(2)設(shè)直線與橢圓相切,聯(lián)立方程求參數(shù)m,與之間的距離的最大值,即為橢圓E上的點(diǎn)到直線l距離的最大值.【小問(wèn)1詳解】已知橢圓E方程為,所以,△的周長(zhǎng)為,其中,所以△的周長(zhǎng)為.【小問(wèn)2詳解】設(shè)直線與直線l平行且與橢圓相切,則,得,即,令,解得,所以,與之間的距離,即橢圓E上的點(diǎn)到直線l距離的最大值為19、(1)或.(2)8【解析】(1)先判斷當(dāng)斜率不存在時(shí),不滿足條件;再判斷當(dāng)斜率存在時(shí),設(shè)利用垂徑定理列方程求出k,即可求出直線方程;(2)過(guò)P作圓C的兩條切線,切點(diǎn)分別為A、B,連結(jié)CA、CB,得到.判斷出當(dāng)時(shí),最小,四邊形PACB面積取得最小值.利用點(diǎn)到直線的距離公式求出,,即可求出四邊形PACB面積的最小值.【小問(wèn)1詳解】圓C:化為標(biāo)準(zhǔn)方程為:,所以圓心為,半徑為r=4.(1)當(dāng)斜率不存在時(shí),x=1代入圓方程得,弦長(zhǎng)為,不滿足條件;(2)當(dāng)斜率存在時(shí),設(shè)即.圓心C到直線l的距離,解得:或k=0,所以直線方程為或.【小問(wèn)2詳解】過(guò)P作圓C的兩條切線,切點(diǎn)分別為A、B,連結(jié)CA、CB,則.因?yàn)?所以所以.所以當(dāng)時(shí),最小,四邊形PACB面積取得最小值.所以,所以,即四邊形PACB面積的最小值為8.20、(1);(2)【解析】(1)設(shè)圓的標(biāo)準(zhǔn)方程為:,則分別代入原點(diǎn)和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過(guò)點(diǎn)與圓相切,則分別討論斜率存在與否,運(yùn)用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為,則分別代入原點(diǎn)和,得到,解得則圓的標(biāo)準(zhǔn)方程為(2)由(1)得到圓心為,半徑,由于直線過(guò)點(diǎn)與圓相切,當(dāng)時(shí),到的距離為2,不合題意,舍去;當(dāng)斜率存在時(shí),設(shè),由直線與圓相切,得到,即有,解得,故直線,即為點(diǎn)睛:本題考查直線與圓位置關(guān)系,考查圓的方程的求法和直線與圓相切的條件,考查運(yùn)算能力,屬于中檔題;圓的方程有一般形式與標(biāo)準(zhǔn)形式,在該題中利用待定系數(shù)法將其設(shè)為標(biāo)準(zhǔn)形式,列、解出方程組即可;當(dāng)直線與圓相切時(shí)等價(jià)于圓心到直線的距離等于半徑,已知直線上一點(diǎn)寫出直線的方程需注意斜率不存在的情形.21、(1)(2)證明見解析【解析】(1)根據(jù)周長(zhǎng)為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標(biāo),根據(jù)在橢圓上,得到,然后代入Q的橫坐標(biāo)求解;方法二:設(shè)直線,的斜率分別為k,,點(diǎn),,直線的方程為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論