版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省正定縣第三中學2025屆高二數(shù)學第一學期期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線y=lnx在點M處的切線過原點,則該切線的斜率為()A.1 B.eC.-1 D.2.已知圓C的方程為,點P在圓C上,O是坐標原點,則的最小值為()A.3 B.C. D.3.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.4.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.5.橢圓的焦點坐標為()A.和 B.和C.和 D.和6.已知直線,當變化時,所有直線都恒過點()A.B.C.D.7.設函數(shù)在定義域內可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.8.若函數(shù)在區(qū)間內存在最大值,則實數(shù)的取值范圍是()A. B.C. D.9.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.10.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為()A. B.C.+1 D.11.已知向量,,則下列向量中,使能構成空間的一個基底的向量是()A. B.C. D.12.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.14.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________15.不等式的解集是_______________16.命題“矩形的對角線相等”的否命題是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),在處有極值.(1)求、的值;(2)若,有個不同實根,求的范圍.18.(12分)已知數(shù)列的前項的和為,且.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項20.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.21.(12分)設函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調遞減,求a的取值范圍22.(10分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設出點坐標,結合導數(shù)列方程,由此求得切點坐標并求得切線的斜率.【詳解】設切點為,,故在點的切線的斜率為,所以,所以切點為,切線的斜率為.故選:D2、B【解析】化簡判斷圓心和半徑,利用圓的性質判斷連接線段OC,交圓于點P時最小,再計算求值即得結果.【詳解】化簡得圓C的標準方程為,故圓心是,半徑,則連接線段OC,交圓于點P時最小,因為原點到圓心的距離,故此時.故選:B.3、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎題.4、D【解析】用基本量表示可得基本量的關系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設不合,故,故,故,而,故,此時不確定,故選:D.5、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D6、D【解析】將直線方程整理為,從而可得直線所過的定點.【詳解】可化為,∴直線過定點,故選:D.7、D【解析】根據(jù)的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據(jù)原函數(shù)的單調性來考慮導函數(shù)的符號與零點情況,本題屬于基礎題.8、A【解析】利用函數(shù)的導數(shù),求解函數(shù)的極值,推出最大值,然后轉化列出不等式組求解的范圍即可【詳解】,或,∴在單調遞減,在單調遞增,在單調遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.9、B【解析】設出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關系即可求解.【詳解】以O為原點,AD所在直線為x軸建系,不妨設,則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎題目10、A【解析】設F′為雙曲線的右焦點,連接OE,PF′,根據(jù)圓的切線性質和三角形中位線得到|OE|=a,|PF′|=2a,利用雙曲線的定義求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立關系即可求得離心率的值.【詳解】不妨設E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′,如圖所示:因為PF是圓O的切線,所以OE⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的定義,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.【點睛】本題考查雙曲線的離心率的求法,聯(lián)想到雙曲線的另一個焦點,作輔助線,利用雙曲線的定義是求解離心率問題的有效方法.11、D【解析】根據(jù)向量共面基本定理只需無解即可滿足構成空間向量基底,據(jù)此檢驗各選項即可得解.【詳解】因為,所以A中的向量不能與,構成基底;因為,所以B中的向量不能與,構成基底;對于,設,則,解得,,所以,故,,為共面向量,所以C中的向量不能與,構成基底;對于,設,則,此方程組無解,所以,,不共面,故D中的向量與,可以構成基底.故選:D12、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】∵y′=3x2+2ax+b,∴或當a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=414、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:315、或【解析】將分式不等式,轉化為一元二次不等式求解【詳解】因為,所以,解得或.故答案為:或【點睛】本題主要考查分式不等式的解法,還考查了運算求解的能力,屬于基礎題.16、“若一個四邊形不是矩形,則它的對角線不相等”【解析】否命題是條件否定,結論否定,即可得解.【詳解】否命題是條件否定,結論否定,所以命題“矩形的對角線相等”的否命題是“若一個四邊形不是矩形,則它的對角線不相等”故答案為:“若一個四邊形不是矩形,則它的對角線不相等”三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)題設條件可得,由此可解得與的值(2)依題意可知直線與函數(shù)的圖象有三個不同的交點,則的取值范圍介于極小值與極大值之間.【小問1詳解】因為函數(shù),在處有極值,所以,即,解得,.【小問2詳解】由(1)知,,所以在上,,單調遞增,在上,,單調遞減,在上,,單調遞增,所以,,若有3個不同實根,則,所以的取值范圍為.18、(1);(2).【解析】(1)根據(jù),并結合等比數(shù)列的定義即可求得答案;(2)結合(1),并通過錯位相減法即可求得答案.【小問1詳解】當時,,當時,,是以2為首項,2為公比的等比數(shù)列,.【小問2詳解】,…①…②①-②得,.19、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為20、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調性或三角函數(shù)的有界性等求最值21、(1)(2)【解析】(1)對求導,再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區(qū)間上的最小值即可得出結論.【詳解】(1),則,因為在處取得極值,所以,解得,經(jīng)檢驗,當時,在處取得極值;(2)因為在上單調遞減,所以對恒成立,則對恒成立,∵當時,,∴,即a的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年茶產(chǎn)業(yè)綜合發(fā)展項目可行性研究報告
- 2025年綠色化肥生產(chǎn)與銷售項目可行性研究報告
- 2025年電力存儲系統(tǒng)解決方案可行性研究報告
- 2025年2B市場產(chǎn)品研發(fā)項目可行性研究報告
- 2025年野生動植物保護科技項目可行性研究報告
- 2025年生物塑料的市場潛力可行性研究報告
- 2025年智能化辦公空間設計項目可行性研究報告
- 校園生活與友誼緬懷
- 2026年大同煤炭職業(yè)技術學院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2026年天津鐵道職業(yè)技術學院單招職業(yè)技能測試題庫及參考答案詳解1套
- 2023年考研歷史學模擬試卷及答案 古代希臘文明
- 獸藥營銷方案
- 2025年廣西繼續(xù)教育公需科目真題及答案
- 質量SQE月度工作匯報
- 紅外光譜課件
- 液壓油路圖培訓課件
- LCD-100-A火災顯示盤用戶手冊-諾蒂菲爾
- 2025至2030中國大學科技園行業(yè)發(fā)展分析及發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 餐飲大數(shù)據(jù)與門店開發(fā)項目二餐飲門店開發(fā)選址調研任務四同行分
- 腦卒中后的焦慮抑郁課件
- 廉潔從業(yè)教育培訓課件
評論
0/150
提交評論