版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
貴州省銅仁市碧江區(qū)銅仁一中2025屆數(shù)學高二上期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.2.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.143.橢圓焦距為()A. B.8C.4 D.4.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.15.直線l經(jīng)過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.6.在中,,則邊的長等于()A. B.C. D.27.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.8.設,則有()A. B.C. D.9.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.10.關于的不等式的解集為()A. B.C.或 D.11.等差數(shù)列中,為其前項和,,則的值為()A.13 B.16C.104 D.20812.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知點是橢圓上任意一點,則點到直線距離的最小值為______14.從正方體的8個頂點中選取4個作為項點,可得到四面體的概率為________15.函數(shù)的單調(diào)遞減區(qū)間是___________.16.瑞士數(shù)學家歐拉(Euler)1765年在所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,,則歐拉線的方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.18.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個零點.19.(12分)已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經(jīng)過,,三點,求橢圓E的標準方程20.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值21.(12分)已知橢圓的標準方程為:,若右焦點為且離心率為(1)求橢圓的方程;(2)設,是上的兩點,直線與曲線相切且,,三點共線,求線段的長22.(10分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由等比中項的性質(zhì)及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.2、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設等比數(shù)列的公比為,則,所以故選:B3、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A4、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎題型.5、B【解析】聯(lián)立已知兩條直線方程求出交點,再根據(jù)兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.6、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負值舍去)故選:A7、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A8、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.9、D【解析】由橢圓的定義及雙曲線的定義結合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D10、C【解析】求出不等式對應方程的根,結合不等式和二次函數(shù)的關系,即可得到結果.【詳解】不等式對應方程的兩根為,因為,故可得,根據(jù)二次不等式以及二次函數(shù)的關系可得不等式的解集為或.故選:C.【點睛】本題考查含參二次不等式的求解,屬基礎題.11、D【解析】利用等差數(shù)列下標的性質(zhì),結合等差數(shù)列前項和公式進行求解即可.【詳解】由,所以,故選:D12、C【解析】作出不等式組對應的可行域,再利用數(shù)形結合分析求解.【詳解】解:作出不等式組對應的可行域為如圖所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當直線平移到點時,縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點到直線的最小值.【詳解】設與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.14、【解析】計算出正方體的8個頂點中選取4個作為項點的取法和分從上底面取一個點下底面取三個點、從上底面取二個點下底面取二個點、從上底面取三個點下底面取一個點可得到四面體的取法,由古典概型概率計算公式可得答案.【詳解】正方體的8個頂點中選取4個作為項點,共有取法,可得到四面體的情況有從上底面取一個點下底面取三個點有種;從上底面取二個點下底面取二個點有種,其中當上底面和下底面取的四個點在同一平面時共有10種情況不符合,此種情況共有種;從上底面取三個點下底面取一個點有種;一個有種,所以可得到四面體的概率為.故答案為:.15、【解析】首先對求導,可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于基礎題.16、【解析】根據(jù)給定信息,利用三角形重心坐標公式求出的重心,再結合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點,,,則的重心,顯然的外心在線段AC中垂線上,設,由得:,解得:,即點,直線,化簡整理得:,所以歐拉線的方程為.故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關系即可判斷結果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1)(2)證明見解析【解析】(1)利用導數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導后發(fā)現(xiàn)導數(shù)中無參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點存在定理結合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個零點.【小問1詳解】若,則,其定義域為,∴,由,得,∴當時,;當時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠,∵,∴當時,,故在上無零點;當時,,∵且,∴在上有且只有一個零點.綜上,有且只有一個零點.19、【解析】分橢圓的焦點在軸上與焦點在軸上,兩種情況討論,利用待定系數(shù)法求出橢圓方程;【詳解】解:(1)當橢圓的焦點在軸上時,設其方程為(),則又點C在橢圓上,得,解得,所以橢圓E的方程為(2)當橢圓的焦點在軸上時,設其方程為(),則又點C在橢圓上,得,解得,這與矛盾綜上可知,橢圓的方程為20、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標原點,建立如圖所示的空間直角坐標系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設BC中點為,連接,,又面面,且面面,所以面.以為坐標原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標系.由(1)知PB⊥平面PCD,故PB⊥,設,可得所以由題得,解得.所以設是平面的法向量,則,即,可取.設是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1);(2).【解析】(1)根據(jù)橢圓的焦點、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設直線方程聯(lián)立橢圓方程并應用韋達定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當直線的斜率不存在時,直線,不合題意:當直線的斜率存在時,設,又,,三點共線,可設直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.22、(1)見解析(2)見解析【解析】(1)由導數(shù)得出在上的單調(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 塔機指揮培訓
- 員工薪資考勤培訓
- 員工管理培訓課件
- 倉庫內(nèi)容培訓
- 員工理論培訓課件
- 員工消防知識培訓基本內(nèi)容
- 員工服務溝通培訓
- 員工操作規(guī)范培訓
- 倉儲物流三級安全培訓
- 境外投資培訓課件
- 廣東省佛山市2024-2025學年高二上學期期末考試 語文 含解析
- 中藥材及中藥飲片知識培訓
- 2024年臺州三門農(nóng)商銀行招聘筆試真題
- 高一政治必修1、必修2基礎知識必背資料
- 垃圾處理設備維修合同
- DB4114T 105-2019 黃河故道地區(qū)蘋果化學疏花疏果技術規(guī)程
- 如何高效向GPT提問
- JT-T-969-2015路面裂縫貼縫膠
- 無抗養(yǎng)殖模式可行性分析
- 《常見疾病康復》課程教學大綱
- 飼料廠HACCP計劃書
評論
0/150
提交評論