版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省青島第二中學2025屆數(shù)學高一上期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)在上最大值與最小值之和是()A. B.C. D.2.關(guān)于的不等式對任意恒成立,則實數(shù)的取值范圍是()A. B.C. D.3.如果關(guān)于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-84.已知是函數(shù)的反函數(shù),則的值為()A.0 B.1C.10 D.1005.已知,若,則x的取值范圍為()A. B.C. D.6.圓的圓心到直線的距離是()A. B.C.1 D.7.函數(shù)的零點所在的區(qū)間是A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.已知,則為()A. B.2C.3 D.或39.已知函數(shù)為奇函數(shù),且當時,,則()A. B.C. D.10.已知函數(shù)f(x)(x∈R)滿足f(2-x)=-f(x),若函數(shù)y=與f(x)圖象的交點為(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),則x1+x2+x3+…+xm的值為()A.4m B.2mC.m D.0二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的定義域為,則函數(shù)的定義域為______12.已知圓心為,且被直線截得的弦長為,則圓的方程為__________13.計算:()0+_____14.如圖,全集,A是小于10的所有偶數(shù)組成的集合,,則圖中陰影部分表示的集合為__________.15.已知集合M={3,m+1},4∈M,則實數(shù)m的值為______16.若關(guān)于的方程只有一個實根,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.計算(1);(2)計算:;(3)已知,求.18.如圖,已知多面體PABCDE的底面ABCD是邊長為2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)證明:平面PAC⊥平面PCE;(2)若直線PC與平面ABCD所成的角為45°,求直線CD與平面PCE所成角的正弦值19.從下面所給三個條件中任意選擇一個,補充到下面橫線處,并解答.條件一、,;條件二、方程有兩個實數(shù)根,;條件三、,.已知函數(shù)為二次函數(shù),,,.(1)求函數(shù)的解析式;(2)若不等式對恒成立,求實數(shù)k的取值范圍.20.已知函數(shù)(1)求的值域;(2)討論函數(shù)零點的個數(shù).21.(1)若,求的值;(2)已知銳角,滿足,若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】直接利用的范圍求得函數(shù)的最值,即可求解.【詳解】∵,∴,∴,∴最大值與最小值之和為,故選:.2、B【解析】當時可知;當時,采用分離變量法可得,結(jié)合基本不等式可求得;綜合兩種情況可得結(jié)果.【詳解】當時,不等式為恒成立,;當時,不等式可化為:,,(當且僅當,即時取等號),;綜上所述:實數(shù)的取值范圍為.故選:B.3、B【解析】根據(jù)一元二次不等式的解集,利用根與系致的關(guān)系求出的值
,再計的值.【詳解】由不等式的解集是,所以是方程的兩個實數(shù)根.則,所以所以故選:B4、A【解析】根據(jù)給定條件求出的解析式,再代入求函數(shù)值作答.【詳解】因是函數(shù)的反函數(shù),則,,所以的值為0.故選:A5、C【解析】首先判斷函數(shù)的單調(diào)性和定義域,再解抽象不等式.【詳解】函數(shù)的定義域需滿足,解得:,并且在區(qū)間上,函數(shù)單調(diào)遞增,且,所以,即,解得:或.故選:C【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是判斷函數(shù)的單調(diào)性和定義域,尤其是容易忽略函數(shù)的定義域.6、A【解析】根據(jù)圓的方程得出圓心坐標(1,0),直接依據(jù)點到直線的距離公式可以得出答案.【詳解】圓的圓心坐標為(1,0),∴圓心到直線的距離為.故選:A.【點睛】本題考查點到直線距離公式,屬于基礎(chǔ)題型.7、B【解析】因為函數(shù)為上的增函數(shù),故利用零點存在定理可判斷零點所在的區(qū)間.【詳解】因為為上的增函數(shù),為上的增函數(shù),故為上的增函數(shù).又,,由零點存在定理可知在存在零點,故選B.【點睛】函數(shù)的零點問題有兩種類型,(1)計算函數(shù)的零點,比如二次函數(shù)的零點等,有時我們可以根據(jù)解析式猜出函數(shù)的零點,再結(jié)合單調(diào)性得到函數(shù)的零點,比如;(2)估算函數(shù)的零點,如等,我們無法計算此類函數(shù)的零點,只能借助零點存在定理和函數(shù)的單調(diào)性估計零點所在的范圍.8、C【解析】根據(jù)分段函數(shù)的定義域求解.【詳解】因為,所以故選:C9、C【解析】根據(jù)奇函數(shù)的定義得到,又由解析式得到,進而得到結(jié)果.【詳解】因為函數(shù)為奇函數(shù),故得到當時,,故選:C.10、C【解析】由條件可得,即有關(guān)于點對稱,又的圖象關(guān)于點對稱,即有,為交點,即有,也為交點,計算即可得到所求和【詳解】解:函數(shù)滿足,即為,可得關(guān)于點對稱,函數(shù)的圖象關(guān)于點對稱,即有,為交點,即有,也為交點,,為交點,即有,也為交點,則有.故選.【點睛】本題考查抽象函數(shù)的求和及對稱性的運用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用的定義域,求出的值域,再求x的取值范圍.【詳解】的定義域為即的定義域為故答案為:12、【解析】由題意可得弦心距d=,故半徑r=5,故圓C的方程為x2+(y+2)2=25,故答案為x2+(y+2)2=2513、【解析】根據(jù)根式、指數(shù)和對數(shù)運算化簡所求表達式.【詳解】依題意,原式.故答案為:【點睛】本小題主要考查根式、指數(shù)和對數(shù)運算,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎(chǔ)題.14、【解析】根據(jù)維恩圖可知,求,根據(jù)補集、交集運算即可.【詳解】,A是小于10的所有偶數(shù)組成的集合,,,由維恩圖可知,陰影部分為,故答案為:15、3【解析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3故答案為3.16、【解析】把關(guān)于的方程只有一個實根,轉(zhuǎn)化為曲線與直線的圖象有且只有一個交點,在同一坐標系內(nèi)作出曲線與直線的圖象,結(jié)合圖象,即可求解.【詳解】由題意,關(guān)于方程只有一個實根,轉(zhuǎn)化為曲線與直線的圖象有且只有一個交點,在同一坐標系內(nèi)作出曲線與直線的圖象,如圖所示,結(jié)合圖象可知,當直線介于和之間的直線或與重合的直線符合題意,又由直線在軸上的截距分別為,所以實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,其中解答中把方程的解轉(zhuǎn)化為直線與曲線的圖象的交點個數(shù),結(jié)合圖象求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)(2)根據(jù)分數(shù)指數(shù)冪的定義,及指數(shù)的運算性質(zhì),代入計算可得答案;(3)由,可得,即,將所求平方,代入即可得答案【詳解】(1);(2)(3)∵=3,∴()2=x2+x﹣2+2=9,∴x2+x﹣2=7則()2=x2+x﹣2﹣2=5,∴【點睛】此題主要考查指對冪四則運算,熟練掌握指對冪的基本知識點很容易求解,屬于簡單題目18、(1)見解析(2)2【解析】1連接BD,交AC于點O,設(shè)PC中點為F,連接OF,EF,先證出BD∥EF,再證出EF⊥平面PAC,,結(jié)合面面垂直的判定定理即可證平面PAC⊥平面PCE;2先證明∠PCA=45°,設(shè)CD的中點為M,連接AM,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2解析:(1)證明:連接BD,交AC于點O,設(shè)PC中點為F,連接OF,EF∵O,F(xiàn)分別為AC,PC的中點,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四邊形OFED為平行四邊形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE?平面PCE,∴平面PAC⊥平面PCE(2)因為直線PC與平面ABCD所成角為45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC為等邊三角形,設(shè)CD的中點為M,連接AM,則AM⊥CD,設(shè)點D到平面PCE的距離為h1,點P到平面CDE的距離為h則由VD-PCE=V因為ED⊥面ABCD,AM?面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因為PA//DE,PA?平面CDE,DE?面CDE,所以PA//面CDE,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2因為PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6?設(shè)CD與平面PCE所成角的正弦值為2419、(1)選擇條件一、二、三均可得(2)【解析】(1)根據(jù)二次函數(shù)的性質(zhì),無論選擇條件一、二、三均可得的對稱軸為,進而待定系數(shù)求解即可;(2)由題對恒成立,進而結(jié)合基本不等式求解即可.【小問1詳解】解:選條件一:設(shè)因為,,所以的對稱軸為,因為,,所以,解得,所以選條件二:設(shè)因為方程有兩個實數(shù)根,,所以的對稱軸為,因為,,所以,解得,所以選條件三:設(shè)因為,,所以的對稱軸為,因為,,所以,解得,所以【小問2詳解】解:對恒成立對恒成立當且僅當時取等號,∴所求實數(shù)k的取值范圍為.20、(1);(2)答案見解析.【解析】(1)分和,分別求出對應(yīng)函數(shù)的值域,進而可求出結(jié)果;(2)作出函數(shù)的圖象,數(shù)形結(jié)合即可分析出結(jié)果.【小問1詳解】當時,,對稱軸為,開口向上,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即值域為;當時,,則在上單調(diào)遞減,且,所以,即值域為,故的值域為.【小問2詳解】由,得,則零點的個數(shù)可以看作直線與的圖象的交點個數(shù),當時,取得最小值,的圖象如圖所示.①當時,直線與的圖象有0個交點,即零點的個數(shù)為0;②當或時,直線與的圖象有1個交點,即零點的個數(shù)為1;③當或時,直線與的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026江蘇無錫市宜興市丁蜀鎮(zhèn)招聘國企編外人員14人備考題庫及一套答案詳解
- 2025北京市西城區(qū)教委所屬事業(yè)單位招聘576人備考題庫及答案詳解(易錯題)
- 2026岳陽市中心醫(yī)院人員招聘71人備考題庫有答案詳解
- 2025特能集團審計中心工作人員招聘備考題庫及1套完整答案詳解
- 2025浙江寧波海發(fā)漁業(yè)科技有限公司招聘1人備考題庫及1套參考答案詳解
- 2026上半年云南事業(yè)單位聯(lián)考備考題庫職位表下載及一套參考答案詳解
- 食品生產(chǎn)灌裝管理制度
- 生產(chǎn)量交貨管理制度
- 試生產(chǎn)開停車管理制度
- 書店安全生產(chǎn)規(guī)章制度
- 2025年軍事理論知識考核試題及答案
- 直招軍官筆試題目及答案
- 2026屆云南省昆明市五華區(qū)數(shù)學高二第一學期期末考試試題含解析
- 老年人夏季健康知識講座
- 部編版六年級語文期末復習易錯題專題練習
- 2025年深圳非高危安全管理員和企業(yè)負責人習題(有答案版)(1)1
- 飛行汽車課件
- 春節(jié)花草養(yǎng)護知識培訓
- 消防安全隱患排查清單
- 新能源汽車火災(zāi)撲救課件
- 紅酒倒酒知識培訓總結(jié)報告課件
評論
0/150
提交評論