版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省小池濱江高級中學2025屆數(shù)學高二上期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.52.已知函數(shù)的導函數(shù)的圖象如圖所示,則下列結論正確的是().A.函數(shù)在上是增函數(shù)B.C.D.是函數(shù)的極小值點3.函數(shù)是偶函數(shù)且在上單調遞減,,則的解集為()A. B.C. D.4.已知數(shù)列的通項公式為,且數(shù)列是遞增數(shù)列,則實數(shù)的取值范圍是()A. B.C. D.5.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.6.已知,設函數(shù),若關于的不等式恒成立,則的取值范圍為()A. B.C. D.7.攢(cuán)尖是我國古代建筑中屋頂?shù)囊环N結構樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.8.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面9.已知橢圓的右焦點為,為坐標原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.10.已知兩圓相交于兩點和,兩圓的圓心都在直線上,則的值為A. B.2C.3 D.011.在數(shù)列中,,則此數(shù)列最大項的值是()A.102 B.C. D.10812.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線平行,則實數(shù)m的值為______14.在區(qū)間上隨機取1個數(shù),則取到的數(shù)小于2的概率為___________.15.在梯形中,,,.將梯形繞所在的直線旋轉一周而形成的曲面所圍成的幾何體的體積為______.16.已知向量,,,若,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的等差數(shù)列滿足,且,,構成等比數(shù)列的前三項.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.18.(12分)已知數(shù)列的前項和為,且滿足,,成等比數(shù)列,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.19.(12分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.20.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大?。唬?)在側棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由21.(12分)已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足:,,求數(shù)列的通項公式.22.(10分)2021年2月12日,辛丑牛年大年初一,由賈玲導演的電影《你好,李煥英》上映,截至到2月21日22點8分,票房攀升至40.25億,反超同期上映的《唐人街探案3》,迎來了2021春節(jié)檔最具戲劇性的一幕.正是因為影片中母女間的這份簡單、純粹、誠摯的情感觸碰了人們內(nèi)心柔軟的地方,打動了萬千觀眾,才贏得了良好的口碑,不少觀眾都流下了感動的淚水.影片結束后,某電影院工作人員當日隨機抽查了100名觀看《你好,煥英》的觀眾,詢問他們在觀看影片的過程中是否“流淚”,得到以下表格:男性觀眾女性觀眾合計流淚20沒有流淚520合計(1)完成表格中的數(shù)據(jù),并判斷是否有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關?(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,然后從這5人中再隨機抽取2人,求這2人都流淚的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B2、B【解析】根據(jù)導函數(shù)的圖像,可求得函數(shù)的單調區(qū)間,再根據(jù)極值點的定義逐一判斷各個選項即可得出答案.【詳解】解:根據(jù)函數(shù)的導函數(shù)的圖象,可得或時,,當或時,,所以函數(shù)在和上遞減,在和上遞增,故A錯誤;,故B正確;,故C錯誤;是函數(shù)的極大值點,故D錯誤.故選:B.3、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為函數(shù)是偶函數(shù)且在上單調遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.4、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C5、A【解析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點坐標為,所以切線方程為,化簡得.故選:A.6、D【解析】由題設易知上恒成立,而在上,討論、,結合導數(shù)研究的最值,由不等式恒成立求的取值范圍.【詳解】由時,在上;由時,在上遞減,值域為;令且,則,當時,,即遞增,值域為,滿足題設;當時,在上,即遞減,在上,即遞增,此時值域為;當,即時存在,而在中,此時,不合題設;所以,此時要使的不等式恒成立,只需,即,可得;綜上,關于的不等式恒成立,則的取值范圍為.故選:D【點睛】關鍵點點睛:由題設易知上,只需在上恒有即可.7、B【解析】由軸截面三角形,根據(jù)已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側面積.故選:B8、D【解析】根據(jù)對立事件的定義選擇【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為“有2次或3次出現(xiàn)反面”故選:D9、D【解析】設橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關系,利用橢圓的定義進而求得離心率.【詳解】設橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設,,則,所以,故選:D.10、C【解析】根據(jù)條件知:兩圓的圓心的所在的直線與兩圓的交點所在的直線垂直,以及兩圓的交點的中點在兩圓的圓心的所在的直線上,由此得到方程,得解.【詳解】由已知兩圓的交點與兩圓的圓心的所在的直線垂直,,所以,又因為兩圓的交點的中點在兩圓的圓心所在的直線上,所以,解得:,所以,故選.【點睛】此題主要考查圓與圓的位置關系,解答此題的關鍵是需知兩圓的圓心所在的直線與兩圓的交點所在的直線垂直,并且兩圓的交點的中點在兩圓的圓心所在的直線上,此題屬于基礎題.11、D【解析】將將看作一個二次函數(shù),利用二次函數(shù)的性質求解.【詳解】將看作一個二次函數(shù),其對稱軸為,開口向下,因為,所以當時,取得最大值,故選:D12、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由兩直線平行的判定可得求解即可,注意驗證是否出現(xiàn)直線重合的情況.【詳解】由題設,,解得,經(jīng)檢驗滿足題設.故答案為:14、【解析】根據(jù)幾何概型計算公式進行求解即可.【詳解】設“區(qū)間上隨機取1個數(shù)”,對應集合為,區(qū)間長度為3,“取到的數(shù)小于2”,對應集合為,區(qū)間長度為1,所以.故答案為:15、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:16、【解析】首先求出的坐標,再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,;(2).【解析】(1)由等差中項的性質可求出,又,,構成等比數(shù)列,設出公差,代入可求出,從而求出數(shù)列的通項公式,代入可求出,的值,從而求出數(shù)列的通項公式;(2)將通項公式代入,運用裂項相消的方法可求出前項和.【詳解】解析:(1)因為等差數(shù)列中,,所以,設數(shù)列公差為,因為,,構成等比數(shù)列,則,即,解得或(舍)即,又等比數(shù)列中,,所以,;(2)∵,∴,∴【點睛】易錯點睛:(1)裂項相消時一定要注意分母的差,一般情況下分母的差是幾,則要在裂項前面乘以幾分之一;(2)裂項相消時要注意保留的項數(shù).18、(1);(2).【解析】(1)由可得數(shù)列是公差為2的等差數(shù)列,再由,,成等比數(shù)列,列方程可求出,從而可求得數(shù)列的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求出【詳解】解:(1)由,可得,即數(shù)列是公差為2的等差數(shù)列.所以,,.由題意得,解得,所以.(2)由(1)可得,所以數(shù)列的前項和.19、(1)(2)(3)最大值為,最小值為【解析】(1)將點代入函數(shù)解析再結合前和即可求解;(2)運用錯位相減法或分組求和法都可以求解;(3)將數(shù)列的通項變形為,再求和,通過分類討論從單調性上分析求解即可.【小問1詳解】因為點在函數(shù)的圖像上,所以,又數(shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項和為,則=,當n為奇數(shù)時隨著n的增大而減小,可得,當n為偶數(shù)時隨著n增大而增大,可得,所以的最大值為,最小值為.20、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向,建立空間直角坐標系,則,,,,,,所以,,,設平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點F到平面AEC的距離為,理由如下:由(2)得,,設,則,所以點F到平面AEC的距離,解得,,所以21、(1);(2).【解析】(1)由題設條件,結合等差數(shù)列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應用累加法、錯位相減法及等比數(shù)列前n項和公式求的通項公式.【小問1詳解】令公差為d,由得:,解得.所以.【小問2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.22、(1)填表見解析;有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關;(2)【解析】(1)由已知數(shù)據(jù)可完善列聯(lián)表,然后計算可得結論;(2)根據(jù)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國建筑陶瓷行業(yè)綠色生產(chǎn)與市場拓展分析報告
- 中國建筑節(jié)能玻璃行業(yè)政策環(huán)境分析及技術趨勢與產(chǎn)能預測報告
- 中國建筑用光伏玻璃回收技術路線與經(jīng)濟性報告
- 中國建筑機械行業(yè)財稅政策與成本優(yōu)化研究報告
- 中國建筑機械行業(yè)農(nóng)村市場需求挖掘與渠道下沉策略報告
- 中國建筑智能化工程市場EPC模式發(fā)展前景報告
- 2026年英文托福聽力練習材料及解析
- 2026年職場溝通與團隊協(xié)作能力心理素質測評題集
- 雨水管理與防澇措施方案
- 城市地下停車場建設方案
- 2026屆廣東省江門市普通高中化學高二第一學期期末調研模擬試題含答案
- 園林綠化施工工藝及注意事項
- 2025年高中語文必修上冊《登泰山記》文言文對比閱讀訓練(含答案)
- 2025年金蝶AI蒼穹平臺新一代企業(yè)級AI平臺報告-
- 2026屆山東菏澤一中高三化學第一學期期末達標測試試題含解析
- 2025中國機械工業(yè)集團有限公司(國機集團)社會招聘19人筆試參考題庫附答案
- 二年級上冊100以內(nèi)的數(shù)學加減混合口算題500道-A4直接打印
- 2025年二級造價師《土建工程實務》真題卷(附解析)
- 智慧農(nóng)業(yè)管理中的信息安全對策
- 港口安全生產(chǎn)知識培訓課件
- 通信凝凍期間安全培訓課件
評論
0/150
提交評論