版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省高密市2025屆高一數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,已知全集,集合,則圖中陰影部分表示的集合為()A. B.C. D.2.方程的解所在的區(qū)間是A B.C. D.3.已知函數(shù)可表示為()xy2345則下列結論正確的是()A. B.的值域是C.的值域是 D.在區(qū)間上單調(diào)遞增4.若,則下列說法正確的是()A.若,則 B.若,則C.若且,則 D.若,則5.《擲鐵餅者》取材于希臘的現(xiàn)實生活中的體育競技活動,刻畫的是一名強健的男子在擲鐵餅過程中最具有表現(xiàn)力的瞬間.現(xiàn)在把擲鐵餅者張開的雙臂近似看成一張拉滿弦的“弓”,擲鐵餅者的手臂長約米,肩寬約為米,“弓”所在圓的半徑約為米,你估測一下擲鐵餅者雙手之間的距離約為(參考數(shù)據(jù):,)()A.米 B.米C.米 D.米6.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則7.若log2a<0,,則()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<08.已知函數(shù),函數(shù)有三個零點,則取值范圍是A. B.C. D.9.針對“臺獨”分裂勢力和外部勢力勾結的情況,為捍衛(wèi)國家主權和領土完整,維護中華民族整體利益和兩岸同胞切身利益,解放軍組織多種戰(zhàn)機巡航.已知海面上的大氣壓強是,大氣壓強(單位:)和高度(單位:)之間的關系為(為自然對數(shù)的底數(shù),是常數(shù)),根據(jù)實驗知高空處的大氣壓強是,則當殲20戰(zhàn)機巡航高度為,殲16D戰(zhàn)機的巡航高度為時,殲20戰(zhàn)機所受的大氣壓強是殲16D戰(zhàn)機所受的大氣壓強的()倍(精確度為0.01).A.0.67 B.0.92C.1.09 D.1.2610.化簡:()A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點為圓上的動點,則的最小值為__________12.若函數(shù)滿足以下三個條件:①定義域為R且函數(shù)圖象連續(xù)不斷;②是偶函數(shù);③恰有3個零點.請寫出一個符合要求的函數(shù)___________.13.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由14.已知函數(shù)是奇函數(shù),當時,,若,則m的值為______.15.已知一個扇形的弧所對的圓心角為54°,半徑r=20cm,則該扇形的弧長為_____cm16.若,則的定義域為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面是菱形,,且側面平面,點是的中點(1)求證:(2)若,求證:平面平面18.如圖,在四棱錐中,平面,,為棱上一點.(1)設為與的交點,若,求證:平面;(2)若,求證:19.(1)已知,且,求的值(2)已知,是關于x的方程的兩個實根,且,求的值20.已知.(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);(2)若函數(shù)在區(qū)間(0,1)上有兩個不同的零點,求的取值范圍.21.設,為兩個不共線的向量,若.(1)若與共線,求實數(shù)的值;(2)若為互相垂直的單位向量,且,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)文氏圖表示的集合求得正確答案.【詳解】文氏圖表示集合為,所以.故選:A2、C【解析】設,則由指數(shù)函數(shù)與一次函數(shù)的性質可知,函數(shù)與的上都是遞增函數(shù),所以在上單調(diào)遞增,故函數(shù)最多有一個零點,而,,根據(jù)零點存在定理可知,有一個零點,且該零點處在區(qū)間內(nèi),故選答案C.考點:函數(shù)與方程.3、B【解析】根據(jù)給定的對應值表,逐一分析各選項即可判斷作答.【詳解】由給定的對應值表知:,則,A不正確;函數(shù)的值域是,B正確,C不正確;當時,,即在區(qū)間上不單調(diào),D不正確.故選:B4、D【解析】根據(jù)選項舉反例即可排除ABC,結合不等式性質可判斷D【詳解】對A,取,則有,A錯;對B,取,則有,B錯;對C,取,則有,C錯;對D,若,則正確;故選:D5、C【解析】先計算弓所在的扇形的弧長,算出其圓心角后可得雙手之間的距離.【詳解】弓形所在的扇形如圖所示,則的長度為,故扇形的圓心角為,故.故選:C.6、D【解析】,,故選D.考點:點線面的位置關系.7、D【解析】,則;,則,故選D8、D【解析】根據(jù)題意做出函數(shù)在定義域內(nèi)的圖像,將函數(shù)零點轉化成函數(shù)與函數(shù)圖像交點問題,結合圖形即可求解.【詳解】解:根據(jù)題意畫出函數(shù)的圖象,如圖所示:函數(shù)有三個零點,等價于函數(shù)與函數(shù)有三個交點,當直線位于直線與直線之間時,符合題意,由圖象可知:,,所以,故選:D.【點睛】根據(jù)函數(shù)零點的情況求參數(shù)有三種常用方法:(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中畫出函數(shù)的圖象,然后數(shù)形結合求解.9、C【解析】根據(jù)給定信息,求出,再列式求解作答.【詳解】依題意,,即,則殲20戰(zhàn)機所受的大氣壓強,殲16D戰(zhàn)機所受的大氣壓強,,所以殲20戰(zhàn)機所受的大氣壓強是殲16D戰(zhàn)機所受的大氣壓強的倍.故選:C10、D【解析】利用三角函數(shù)誘導公式、同角三角函數(shù)的基本關系化簡求值即可.【詳解】,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、-4【解析】點為圓上的動點,所以.由,所以當時有最小值-4.故答案為-4.12、(答案不止一個)【解析】根據(jù)偶函數(shù)和零點的定義進行求解即可.詳解】函數(shù)符合題目要求,理由如下:該函數(shù)顯然滿足①;當時,,所以有,當時,,所以有,因此該函數(shù)是偶函數(shù),所以滿足②當時,,或,當時,,或舍去,所以該函數(shù)有3個零點,滿足③,故答案為:13、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復合函數(shù)同增異減的性質求解對應的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關于不等式在給定區(qū)間上恒成立的問題都可轉化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.14、【解析】由奇函數(shù)可得,則可得,解出即可【詳解】因為是奇函數(shù),,所以,即,解得故答案為:【點睛】本題考查利用奇偶性求值,考查已知函數(shù)值求參數(shù)15、【解析】利用扇形的弧長公式求弧長即可.【詳解】由弧長公式知:該扇形的弧長為(cm).故答案為:16、【解析】使表達式有意義,解不等式組即可.【詳解】由題,解得,即,故答案為:.【點晴】此題考函數(shù)定義域的求法,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】分析:(1)可根據(jù)為等腰三角形得到,再根據(jù)平面平面可以得到平面,故.(2)因及是中點,從而有,再根據(jù)平面得到,從而平面,故平面平面.詳解:(1)證明:因為,點是棱的中點,所以,平面.因為平面平面,平面平面,平面,所以平面,又因為平面,所以.(2)證明:因為,點是的中點,所以.由(1)可得,又因為,所以平面,又因為平面,所以平面平面點睛:線線垂直的證明,可歸結為線面垂直,也可以轉化到平面中的某兩條直線的垂直問題,而面面垂直的證明,可轉化為線面垂直問題,也轉化為證明二面角為直二面角.18、(1)見解析;(2)見解析.【解析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,,所以平面,平面,所以19、(1);(2)【解析】(1)先求出角,利用誘導公式即可求出;(2)利用根與系數(shù)關系求出,得到,利用切化弦和二倍角公式即可求解.【詳解】(1)因為,所以由,得,即所以(2)由題意得因為且,所以解得,所以則,即20、(1)答案見解析;(2)【解析】(1)函數(shù)為奇函數(shù),則,據(jù)此可得,且函數(shù)在上單調(diào)遞增;(2)原問題等價于在區(qū)間(0,1)上有兩個不同的根,換元令,結合二次函數(shù)的性質可得的取值范圍是.試題解析:(1)因為是奇函數(shù),所以,所以;在上是單調(diào)遞增函數(shù);(2)
在區(qū)間(0,1)上有兩個不同的零點,等價于方程在區(qū)間(0,1)上有兩個不同的根,即方程在區(qū)間(0,1)上有兩個不同的根,所以方程在區(qū)間上有兩個不同的根,畫出函數(shù)在(1,2)上的圖象,如下圖,由圖知,當直線y=a與函數(shù)的圖象有2個交點時,所以的取值范圍為.點睛:函數(shù)零點的應用主要表現(xiàn)在利用零點求參數(shù)范圍,若方程可解,通過解方程即可得出參數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 程序員技能提升考核含答案
- 設備安全工程師崗位知識考核題庫含答案
- 部門督導精英面試題及答題攻略
- 考試題解析中廣核熱工水力專業(yè)知識
- 2025年城鄉(xiāng)共享單車運營項目可行性研究報告
- 2025年旅游產(chǎn)業(yè)鏈整合與創(chuàng)新可行性研究報告
- 2025年新型城鎮(zhèn)化建設及規(guī)劃可行性研究報告
- 2025年生態(tài)恢復項目可行性研究報告
- 2026年上海政法學院單招職業(yè)傾向性測試題庫及答案詳解一套
- 2026年甘肅省蘭州市單招職業(yè)適應性考試題庫及完整答案詳解1套
- 六年級下冊語文《默寫小紙條》
- 宜賓市2024-2025學年上期義務教育質量監(jiān)測九年級物理試題(含答案)
- 發(fā)電機日常巡查表(完整版)
- 瑞幸咖啡認證考試題庫(咖啡師)
- 品管圈PDCA改善案例-降低住院患者跌倒發(fā)生率
- 個體診所選址報告范文
- DB32T 3129-2016 適合機械化作業(yè)的單體鋼架塑料大棚技術規(guī)范
- 土方倒運的方案
- 2024光伏發(fā)電工程施工質量驗收規(guī)程
- 畫說學習通超星期末考試答案章節(jié)答案2024年
- 蘇教版一年級數(shù)學下冊全冊教案(完整版)教學設計含教學反思
評論
0/150
提交評論