2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省黃岡、華師附中等八校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,則下面關(guān)系中正確的是()A B.C. D.2.已知函數(shù)f(x)=ax2﹣x﹣8(a>0)在[5,20]上單調(diào)遞增,則實數(shù)a的取值范圍是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]3.若函數(shù)的圖象如圖所示,則下列函數(shù)與其圖象相符的是A. B.C. D.4.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,5.設(shè)函數(shù)滿足,當(dāng)時,,則()A.0 B.C. D.16.下列函數(shù)中與函數(shù)是同一個函數(shù)的是()A. B.C. D.7.已知是定義在上的奇函數(shù),當(dāng)時,,則當(dāng)時,的表達式為()A. B.C. D.8.已知命題,,則為()A., B.,C., D.,9.函數(shù)取最小值時的值為()A.6 B.2C. D.10.直線與直線互相垂直,則這兩條直線的交點坐標(biāo)為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為___________.12.已知是定義在正整數(shù)集上的嚴(yán)格減函數(shù),它的值域是整數(shù)集的一個子集,并且,,則的值為___________.13.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2),則f(27)的值為____________14.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.15.兩個球的體積之比為8:27,則這兩個球的表面積之比為________.16.在△ABC中,,面積為12,則=______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口是的中點,分別落在線段上.已知米,米,記.(1)試將污水凈化管道總長度(即的周長)表示為的函數(shù),并求出定義域;(2)問當(dāng)取何值時,污水凈化效果最好?并求出此時管道的總長度.(提示:.)18.已知二次函數(shù).若當(dāng)時,的最大值為4,求實數(shù)的值.19.自新冠疫情爆發(fā)以來,全球遭遇“缺芯”困境,同時以美國為首的西方國家對中國高科技企業(yè)進行打壓及制裁.在這個艱難的時刻,我國某企業(yè)自主研發(fā)了一款具有自主知識產(chǎn)權(quán)的平板電腦,并從2021年起全面發(fā)售.經(jīng)測算,生產(chǎn)該平板電腦每年需投入固定成本1350萬元,每生產(chǎn)x(千臺)電腦需要另投成本(萬元),且,另外,每臺平板電腦售價為0.6萬元,假設(shè)每年生產(chǎn)的平板電腦能夠全部售出.已知2021年共售出10000臺平板電腦,企業(yè)獲得年利潤為1650萬元(1)求企業(yè)獲得年利潤(萬元)關(guān)于年產(chǎn)量x(千臺)的函數(shù)關(guān)系式;(2)當(dāng)年產(chǎn)量為多少(千臺)時,企業(yè)所獲年利潤最大?并求最大年利潤20.已知函數(shù)f(x)的定義域為D,如果存在x0∈D,使得fx0=x0,則稱x0為f(x)的一階不動點;如果存在x0∈D(1)分別判斷函數(shù)y=2x與(2)求fx=x(3)求fx21.已知,求值:(1);(2)2.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)元素與集合關(guān)系,集合與集合的關(guān)系判斷即可得解.【詳解】解:因為,,所以,.故選:D.2、A【解析】函數(shù)f(x)=ax2﹣x﹣8(a>0)的開口向上,對稱軸方程為,函數(shù)在[5,20]上單調(diào)遞增,則區(qū)間在對稱軸的右側(cè),從而可得答案.【詳解】函數(shù)f(x)=ax2﹣x﹣8(a>0)的開口向上,對稱軸方程為。函數(shù)在[5,20]上單調(diào)遞增,則區(qū)間[5,20]在對稱軸的右側(cè).則解得:.故選:A.【點睛】本題考查二次函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性與開口方向和對稱軸有關(guān),屬于基礎(chǔ)題.3、B【解析】由函數(shù)的圖象可知,函數(shù),則下圖中對于選項A,是減函數(shù),所以A錯誤;對于選項B,的圖象是正確的;對C,是減函數(shù),故C錯;對D,函數(shù)是減函數(shù),故D錯誤。故選B4、C【解析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【點睛】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題5、A【解析】根據(jù)給定條件依次計算并借助特殊角的三角函數(shù)值求解作答.【詳解】因函數(shù)滿足,且當(dāng)時,,則,所以.故選:A6、B【解析】根據(jù)同一函數(shù)的概念,結(jié)合函數(shù)的定義域與對應(yīng)法則,逐項判定,即可求解.【詳解】對于A中,函數(shù)的定義為,因為函數(shù)的定義域為,所以兩函數(shù)的定義域不同,不是同一函數(shù);對于B中,函數(shù)與函數(shù)的定義域和對應(yīng)法則都相同,所以是同一函數(shù);對于C中,函數(shù)與函數(shù)的對應(yīng)法則不同,不是同一函數(shù);對于D中,函數(shù)的定義域為,因為函數(shù)的定義域為,所以兩函數(shù)的定義域不同,不是同一函數(shù).故選:B.7、D【解析】當(dāng),即時,根據(jù)當(dāng)時,,結(jié)合函數(shù)的奇偶性即可得解.【詳解】解:函數(shù)是定義在上的奇函數(shù),,當(dāng)時,,當(dāng),即時,.故選:D.8、A【解析】特稱命題的否定為全稱命題,所以,存在性量詞改為全稱量詞,結(jié)論直接改否定即可.【詳解】命題,,則:,答案選A【點睛】本題考查命題的否定,屬于簡單題.9、B【解析】變形為,再根據(jù)基本不等式可得結(jié)果.【詳解】因為,所以,所以,當(dāng)且僅當(dāng)且,即時等號成立.故選:B【點睛】本題考查了利用基本不等式求最值時,取等號的條件,屬于基礎(chǔ)題.10、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標(biāo)為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性解不等式即可.【詳解】由題設(shè),可得:,則,∴不等式解集為.故答案:.12、【解析】利用嚴(yán)格單調(diào)減函數(shù)定義求得值,然后在由區(qū)間上整數(shù)個數(shù),可確定的值【詳解】,根據(jù)題意,,又,,所以,即,,在上只有13個整數(shù),因此可得,故答案為:13、3【解析】根據(jù)冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2)求出a的值,再求f(27)的值.【詳解】冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2),則8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案為3【點睛】本題主要考查冪函數(shù)的概念和解析式的求法,考查冪函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.14、①②③【解析】由誘導(dǎo)公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當(dāng)時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當(dāng)時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式與三角恒等變換,是中檔題.15、【解析】設(shè)兩球半徑分別為,由可得,所以.即兩球的表面積之比為考點:球的表面積,體積公式.16、【解析】利用面積公式即可求出sinC.使用二倍角公式求出cos2C【詳解】由題意,在中,,,面積為12,則,解得∴故答案為【點睛】本題考查了三角形的面積公式,二倍角公式在解三角形中的應(yīng)用,其中解答中應(yīng)用三角形的面積公式和余弦的倍角公式,合理余運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),定義域為.(2)當(dāng)或時所鋪設(shè)的管道最短,為米.【解析】(1)如圖,因為都是直角三角形,故可以得到,也就是,其中.(2)可變形為,令后,則有,其中,故取的最大值米.【詳解】(1).由于,,所以,故.管道的總長度,定義域為.(2).設(shè),則,由于,所以.因為在內(nèi)單調(diào)遞減,于是當(dāng)時,取的最大值米.(此時或).答:當(dāng)或時所鋪設(shè)的管道最短,為米.【點睛】在三角變換中,注意之間有關(guān)系,如,,三者中知道其中一個,必定可以求出另外兩個.18、或.【解析】分函數(shù)的對稱軸和兩種情況,分別建立方程,解之可得答案.【詳解】二次函數(shù)的對稱軸為直線,當(dāng),即時,當(dāng)時,取得最大值4,,解得,滿足;當(dāng),即時,當(dāng)時,取得最大值4,,解得,滿足.故:實數(shù)的值為或.19、(1)(2)當(dāng)年產(chǎn)量為100(千臺)時,企業(yè)所獲年利潤最大,最大年利潤為萬元.【解析】(1)根據(jù)2021年共售出10000臺平板電板電腦,企業(yè)獲得年利潤為1650萬元,求出,進而求出(萬元)關(guān)于年產(chǎn)量x(千臺)的函數(shù)關(guān)系式;(2)分別求出與所對應(yīng)的函數(shù)關(guān)系式的最大值,比較后得到答案.【小問1詳解】10000臺平板電腦,即10千臺,此時,根據(jù)題意得:,解得:,故當(dāng)時,,當(dāng)時,,綜上:;【小問2詳解】當(dāng)時,,當(dāng)時,取得最大值,;當(dāng)時,,當(dāng)且僅當(dāng),即時,等號成立,,因為,所以當(dāng)年產(chǎn)量為100(千臺)時,企業(yè)所獲年利潤最大,最大年利潤為萬元.20、(1)y=2x不存在一階不動點,(2)0,±1(3)3【解析】(1)根據(jù)一階不動點的定義直接分別判斷即可;(2)根據(jù)一階不動點的定義直接計算;(3)根據(jù)分段函數(shù)寫出ffx【小問1詳解】設(shè)函數(shù)gx=2x-x,x∈R所以g'x=又g'0=所以?x0∈0,1,時所以gx在-∞,所以gx≥x所以y=2設(shè)函數(shù)y=x存在一階不動點,即存在x0∈0,+∞上,使x【小問2詳解】由已知得fx0=x0所以fx=xx2-1【小問3詳解】由fx當(dāng)0<x≤1時,fx=e設(shè)Fx=2-ex2-x,x∈0,1,F(xiàn)'x=-ex2-1<0恒成立,所以Fx在0,1上單調(diào)遞減,且F當(dāng)1<x<4時,fx=2-x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論