函數(shù)與導數(shù)中的新定義綜合研析(教師版)_第1頁
函數(shù)與導數(shù)中的新定義綜合研析(教師版)_第2頁
函數(shù)與導數(shù)中的新定義綜合研析(教師版)_第3頁
函數(shù)與導數(shù)中的新定義綜合研析(教師版)_第4頁
函數(shù)與導數(shù)中的新定義綜合研析(教師版)_第5頁
已閱讀5頁,還剩193頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2 2 6 8 9 111.(2024·山東青島·三模)定義[x[表示不超過x的最大整數(shù).例如:[1.2[=1,[-1,2[=-2,則()A.[x[+[y[=[x+y[B.?n∈Z,[x+n[=[x[+n22C.f(x(=x-[x[是偶函數(shù)D.f(x(=x-[x[是增函數(shù)B選項,設y=[x+n[表示不超過x+n的最大整數(shù),所以y≤x+n,所以y-n≤x,所以[x]≤y-n,所以[x]+n≤y,即[x+n]≤y,C選項,f(x)=x-[x],因為f(0.1(=0.1-0=0.1,f(-0.1(=-0.1-(-1(=0.9,所以f(0.1(≠f(-0.1(,所以f(x)不是偶函數(shù),故C錯誤;D選項f(0.1)=0.1,f(1.1)=0.1,所以f(0.1)=f(1.1),所以f(x)不是增函數(shù),故D錯誤.2.(2024·河南新鄉(xiāng)·二模)函數(shù)f(x(=[x[被稱為取整函數(shù),也稱高斯函數(shù),其中[x[表示不大于實數(shù)x的最大整數(shù).若Ym∈(0,+∞(,滿足[x]2+[x[≤,則x的取值范圍是()A.[-1,2[B.(-1,2(C.[-2,2(D.(-2,2[由[x]2+[x[≤可得[x]2+[x[≤2→([x[+2(([x[-1(≤0,所以-2≤[x[≤1,故-2≤x<2,(1)設f(x)=[x[+x+|-[2x[,x∈R,求證:是f(x(的一個周期,且f(x(=0恒成立;(2)已知數(shù)列{an{的通項公式為an=+++…+(n∈N*(,設bn=(1)證明見解析;(1)f(x+=x++[x+1[-[2x+1[=x++[x[+1-[2x[-1=f(x(.故是f(x(的一個周期.,1(,故f(x(=0+0-0=0.33n1=2+1n2+21n2+n-1++n2+11n2+n1n2+2nan2=1n2+n+11n2+n1n2+2nan2=1n2+n+1+nn2+nnn2+n1n+1an1===++???+=2+nn2+nn2+n一人n個n2n21n2+11n2+2++<++<n2+n-1=,∴n1<an1≤.人n個而1=n+1=1+1+???+1n+1n2+2n+1尺n2+2n+1n2+2n人+1n2+2n+1一n個1n2+2nn+1=1n2+nn.<an1n2+2nn+1=1n2+nn.1n+111n+11<an2<<++???+=2+nn2+n2+n一n個,∴n<n<n+1.n=n.[x[,∴n<n<n+1.n=n.[x[+x+=[2x[,②由①知n<n<n+1,則n+n+=n=n.∴bn=n.n<1<n-n-1n∵+n-n<1<n-n-1nS∵>2-1+3-2+?22023=+2024-1<2023=+2024-1<+2025-1=<+2-1+++???+=88A.函數(shù)y=在定義域上是奇函數(shù)B.函數(shù)y=的零點有無數(shù)個C.函數(shù)y=在定義域上的值域是(-1,1(44【詳解】設f(x(=,A選項,f(1.5(==,f(-1.5(==-,整函數(shù)為f(x(=[x[,[x[表示不超過x的最大整數(shù),例如 ()f(x+n(=f(x(+nC.?x,y>0,f(lgx(+f(lgy(=f(lg(xy((*,f(lg1(+f(lg2(+f(lg3(+???+f(lgn(=92對于B,?x∈R,n∈Z,令f(x)=m,則m≤x<m+1,m+n≤x+n<m+n+1,因此f(x+n)=m+n=f(x)+n,B正確;因此f(lg1)+f(lg2)+f(lg3)+???+f(lg99)+f(lg100)=92,此時n=100,D正確.大整數(shù),例如:[3.9[=3,[-2.1[=-3.若在函數(shù)f(x(的定義域內,均滿足在區(qū)間[an,an+1(上,bn=[f(x([是一個常數(shù),則稱{bn{為f(x(的取整數(shù)列,稱{an{為f(x(的區(qū)間數(shù)列.下列說法正確的是 ()A.f(x(=log2x(x≥1(的區(qū)間數(shù)列的通項an=2nB.f(x(=log2x(x≥1(的取整數(shù)列的通項bn=n-155C.f(x(=log2(33x((x≥1(的取整數(shù)列的通項bn≥n+5D.若f(x(=log2x(1≤x<2n(,則數(shù)列{bn(an+1-an({的前n項和Sn=(n-2(2n+2在[2n-1,2n(上,n-1≤log2x<n,[log2x[=n-1,所以an=2n-1,所以A錯誤;對于B中,由選項A知,bn=[f(x([=[log2x[=n-1,所以B正確.f(x([=[log2(33x([=[log2x+log233[≥[log2x[+[log233[=[log2x[+5,n(an+1-an(=(n-1((2n-2n-1(=(n-1(2n-1,2+32+23+34+???+(n-2(×2n-1+(n-1(2n,兩式相減Sn=-(21+22+???+2n-1(+(n-1(2n=-+(n-1(2n=2-2n+(n-1(2n=2+(n-2(2n,所以D正確.xaA.xa>2等價于x2-2(x-a)>2,即2a>-x2+2x+2,因為-x2+2x+2=-(x-1)2+3≤3,所以2a>3,所以a=ad-bc.已知函數(shù)f(x(的定xyxyA.f(1(=1B.f(x(是偶函數(shù)C.f(x(是周期函數(shù)xycxyc-yf(y)=0(*),f(y)f(f(y)f(x)D.f(x(沒有極值點66得:f(x(=,對于A,取f(x(=-,顯然滿足(*)式,此時f(1(=-1,故A錯誤;對于B,f(x(定義域為(-∞,0)∪(0,+∞),則f(-x)==-=-f(x(成立,所以f(x(是奇函數(shù),故B錯誤;對于C,假設非零常數(shù)T為函數(shù)f(x(的周期,即f(x+T(=f(x),則f(x+T(===f(x),其中f(1)≠0,對于D,由于f(x(=,則f/(x(=-,顯然f/(x(=0沒有實數(shù)解,所以f(x(沒有極值點,故D正確;cosθ1-λsinθcosθ1-λsinθx21(2)函數(shù)g(x(=x21-1 x2+,若對?x∈[-1,1[,?θ∈R,都有g(x(-1≥f(θ(恒成立,求實數(shù)λ的取值(1)-3,-(2)-1≤λ≤1(1)f(θ(=cos2θ+2λsinθ-2,λ=,則f(θ(=1-sin2θ+sinθ-2=-sin2θ+sinθ-1,因為sinθ∈[-1,1[,所以f(θ(=-sin2θ+sinθ-1∈-3,-;(2)g(x(=+1=2-,2+,2[,函數(shù)g(x(轉化為函數(shù)y=2-,t∈[1,2[,由題知,(g(x(-1(min≥f(θ(,即f(θ(=cos2θ+2λsinθ-2≤0對于?θ∈R恒成立,令u=sinθ,則u∈[-1,1[,記h(u(=u2-2λu+1,u∈[-1,1[,故只要h(u(min≥0,77①當λ≤-1時,h(u(min=h(-1(=2+2λ≥0,解得λ≥-1,∴λ=-1,②當-1<λ<1時,h(u(min=h(λ(=1-λ2≥0,解得-1≤λ≤1,∴-1<λ<1,10.(2024·全國·模擬預測)德國數(shù)學家狄利克雷(Dirichlet)是解析數(shù)論的創(chuàng)始人之一A.D(D(x))有零點B.D(x)是單調函數(shù)C.D(x)是奇函數(shù)D.D(x)是周期函數(shù)【詳解】根據狄利克雷函數(shù)的性質即可由D(x)=0或D(x)=1均為有理數(shù)求解A,根據D(1)=D(2)=1,D有理數(shù)或同為無理數(shù)即可求解D.所以D(D(x))=1>0,故D(D(x))沒有零點,A錯誤,對于C,因為x和-x同為有理數(shù)或同為無理數(shù),所以D(-x)=D(x),故D(x)是偶函數(shù),C錯誤,所以D(x+T)=D(x),故D(x)是周期函數(shù)(以任意非零有理數(shù)為周期),D正確,雷函數(shù)說法正確的是()A.D(D(e((=1B.它是偶函數(shù)(x(=D(-x(=1;若x∈QC,則-x∈QC,則D(x(=D(-x(=0,所以D(x(為偶函(,,C=D(x(,(x+T2(=0或1,則D(x+T2(≠D(x(,即任意非零有理數(shù)均是D(x(的周期,任何無理數(shù)都不是D(x(的周期,故C正確;8函數(shù)D(x(的值域為{0,1{,故D錯誤;8A.D(D(x((=1C.存在x是無理數(shù),使得D(x+1(=D(x(+1D.?x∈R,總有D(x+1(=D(-x-1(((所以D(x+1(=0,當x是無理數(shù)時,x+1,-x-1均為無理數(shù),此時有D(x+1(=D(-x-1(=0,當x是有理數(shù)時,x+1,-x-1均為有理數(shù),此時有D(x+1(=D(-x-1(=1 所以?x∈R,總有D(x+1(=D(-x-1(,故選項D正確.13.(2024·重慶·一模)(多選)德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其命名的函數(shù)f(x(=A.函數(shù)f(x(為偶函數(shù)RQ,f(-x(=0=f(x(f(x(=0f(f(x((=f(0(=1,C正確;99()A.充分不必要條件B.必要不充分條件x>0x<0C.充要條件D.既不充分也不必要條件x>0x=0x<0x>0x=0x<0當sgn(ex-1(+sgn(-x+1(=0時,取x=-,則ex-1<0,-x+1>0,此時sgn(ex-1(+sgn(-x+1(=-1+1=0,則x>1不成立,即充分性不成立;x-1>0,-x+1<0,所以sgn(ex-1(+sgn(-x+1(=1-1=0,即必要性成立,x-1(+sgn(-x+1(=0”是“x>1”的必要不充分條件.15.(2024·北京·模擬預測)數(shù)學上的符號函數(shù)可以返回一個整型變量,用來指出參數(shù)的正負號,一般用-1,x<0x>0②函數(shù)f(x(的單調遞增區(qū)間為-+kπ,+kπ|(k∈Z(;④在[-2π,2π[上函數(shù)g(x(=xf(x(-1的零點個數(shù)為4.-2sinx,2sinx,cosx<0cosx>0f(x+π(=2sin(x+π(?sgn(cos(x+π((=-2sinx?(-sgn(cosx((=2sinx?sgn(cosx(=f(x(,函數(shù)g(x(=xf(x(-1的零點,即方程xf(x(-1=0的根,x=0時方程不成立,方程等價于f(x(=,函數(shù)f(x(與函數(shù)y=的圖象在[-2π,2π[上有4個交點,所以在[-2π,2π[上函數(shù)g(x(=xf(x(-1的零點個數(shù)為4.結論④正確.16.(22-23高三上·階段練習)已知max{a,b,c{表示a,b,c中的最大值,例如max{1,2,3{=3,若函數(shù)f(x(=max{-x2+4,-x+2,x+3{,則f(x(的最小值為()A.2.5B.3C.4D.5因為f(x(=max{-x2+4,-x+2,x+3{,所以f(x(的圖象如圖實線所示:由{可得A(-1,3(,由{)可得B,,由圖知f(x(在(-∞,-1(上單調遞減,在(-1,0(上單調遞增,在(0,上單調遞減,在,+∞(所以當x=-1時,y=-(-1(2+4=3,所以f(x(的最小值為3,a<b)17.(2024·廣東韶關·二模)定義maxa<b)則2x,3y,的值是((a,,min{a,(a,a<b,對于任意實數(shù)x>0,y>0,【詳解】設max{2x,3y,+{=M,則M≥2x,M≥3y,M≥+,設f(x)=x+2(x>0),則f/(x)=1-3=x3x2,令f/(x)<0?0<x<32,f/(x)>0?x>32,12,即f(x)≥=22故f(x)min=f(12,即f(x)≥=22得f(2x)≥32,f(3y)≥32+=222所以3M≥2x+(2)2+3y+(3)2=f(2x)+f(3y+=222{max{2x,3y,42+92(=18.(2024·全國·模擬預測)設max{x,y,z{為x,y,z中最大的數(shù).已知正實數(shù)a,b,記M=max{(8a,2b,1則M的最小值為()A.1B.2C.2D.4所以M2≥4,M≥2,[a,b[x∈[a,b[19.(2024·湖北·一模)記max{f(x({,min{f(x({[a,b[x∈[a,b[m-[{[,[{|m+n-2n|{(L{=.【詳解】由|m+n-2n|=|(n-1)2+m-1|,設n為變量,{|m+n-2n|{=[,[{|(n-1(2+m-1|(L{,所以t=|(n-1)2+m-1|的最大值為max{|m-1|,|m+3|{,或者由|m+n-2n|=|(n-1)2+m-1|在n∈[0,9[時的最大值只可能在n=0或20.(2023·廣東廣州·模擬預測)歐拉函數(shù)φ(n((n∈N*(的函數(shù)值等于所有不超過正整數(shù)n,且與n互素的正A.3B.4C.5D.621.(2024·全國·模擬預測)(多選)歐拉函數(shù)是初等數(shù)論中的重要內容.對于一個正整數(shù)n,歐拉函數(shù)φ(n(表示小于或等于n且與n互質的正整數(shù)的數(shù)目.換句話說,φ(n(是所有不超過n且與n互素的數(shù)的總數(shù).A.φ(n(的定義域為N*,其值域也是N*B.φ(n(在其定義域上單調遞增,無極值點D.φ(n(≤n-1,當且僅當n是素數(shù)時等號成立n=M(xe,n),x2和n求出x的值.(3)x=M(a0c,n).=2;X15=8.n+則φ(n(=n-1-(p-1(-(q-1(=(p-1((q-1(,由題知,M(sp-1,p(=M(tq-1,q(=1,又xp-1=(kp+s(p-1=(kp(p-1+C-1(kp(p-2s+???+C--kpsp-2+sp-1=N0p+sp-1(k,N0∈N+(,所以M(xp-1,p(=M(sp-1,p(=1,同理有M(xq-1,q(=1;于是記xq-1=kq+1(k∈N+(,xφ(n(=(kq+1(p-1=N1q+1(N1∈N+(,即M(ed,n(=x,即M([M(xe,n([d,n(=x;所以M(ed,n(=M(xde,n(=M(kepde,n(,又M(ke,n(=k1,M(pq-1,q(=1,所以M(ed,n(=M(pdeke,n(=pk1M(pkφ(n(,q(=xM([M(pq-1,q([k(p-1(,q(=xM(1,q(=x;1=3e2+12e=x3e+1,則M(x2e,n(=M(x3e+1,n(,則M(c,n(=M(xc,n(,+0=n,從而數(shù)列{nk{有且僅有k0+1項,考慮使aknk+1-ak+1nk=(-1(k(k∈N+,k≤k0(成立,令k=k0k+1=(-1(k-1,又由于n2,n3,?,nk及k0均由n0=n和n1=c確定,則數(shù)列{ak{的各項也可根據n和c確定,由上知M(a0c,n(=1,M(c,n(=M(xc,n(,則M(a0c,n(=M(xa0c,n(=M([M(x,n(?M(a0c,n([,n(=M(1?x,n(=x,即x=M(a0c,n(,其中a0是根據n和c唯一確定的.在1~2n-bn=--=,當n≤2時bn+1-bn>0,當n≥3時bn+1-bn<0,即b1<b2<b3>b4>b5>??,25.(23-24高三上·河南·階段練習)(多選)黎曼函數(shù)(Riemannfunction)是一個特殊的函數(shù),由德國數(shù)學A.R(B.黎曼函數(shù)的定義域為[0,1[C.黎曼函數(shù)的最大值為D.若f(x(是奇函數(shù),且f(1-x(=f(x(,當x∈[0,1[時,f(x(=R(x(,則f((+f(+6(=因為p,q∈N*,是既約真分數(shù),0,1或(0,1(上的無理數(shù),所以黎曼函數(shù)的定義域為[0,1[,B正確.因為f(1-x(=f(x(,所以f(-x(=f(x+1(.所以f(-x-1(=f(x+2(.因為f(x(是奇函數(shù),所以f(-x-1(=-f(x+1(=-f(-x(=f(x(,所以f(x(=f(x+2(,即f(x(是以2為周期的周期函數(shù),所以(+f(+6(=-,D錯誤.故選:BC.26.(2024·北京石景山·一模)黎曼函數(shù)在高等數(shù)學中有著廣泛應用,其一種定義為:x∈[0,1[時,R(x(=+,∴n=1n+1=n+2=對于ai=a1+a2+a3+?+an=,(n≥2(,構造函數(shù)g(x(=ex-x-1,(x>0(,則g/(x(=ex-1>0,g(x(單調遞增,x>x+1,e>+1,e>+>+1,f(x0))處的曲率,其中f/是f的導函數(shù),f//(x(是f/(x)的導函數(shù).則拋物線x2=2py(p>0)上的各點處的曲率最大值為()A.2pB.pC.=, 率表示曲線的彎曲程度.設函數(shù)y=f(x)的導函數(shù)為f/(x),f/(x證明:函數(shù)g=tanx,x圖象的曲率K(x)的極大值點位于區(qū)間.11-,yⅡ=-.11-,yⅡ=-.3((241-((2、,fⅡ(2)=-2,、,fⅡ(2)=-2,22=2|fⅡ(x0(|=.3=2|fⅡ(x0(|=.3((2[1+(f/(x0((((2y2y2+4(2)由g(x)=tanx=(x)=2sinx3x 2x(x)=2sinx3x 2x==2x,2sinx=cos3x2sinx=cos2sinx=cos3x2sinx=cos3x,33cos4x+1cos4x+14(1-cos2x(cos64(1-cos2x(cos6x(cos4x+1(3∴K2(x(===(cos4x+1(3,cos4x+,cos4x+1t)=.令m(t(=2t3-3t2-4t+3,m/(t(=6t2-6t-4<0,((=-4>0,m∴m((=-4>0,m ,4 ,4/(t)<0.,t0(/(t)<0.(,4,42x(,4,42x, 29.(22-23高三上·山東·階段練習)(多選)曲線的曲率就是針對曲線上某個點的切線方向角對弧長的轉動率,表明曲線偏離直線的程度,曲率越大,表示曲,其中fⅡ(x(是f/(x(的導函數(shù).下面說法正確的是()率,其中fⅡ(x(是f/(x(的導函數(shù).下面說法正確的是()[1+(f/(x((2[1.5A.若函數(shù)f(x)=x3,則曲線y=f(x)在點(-a,-a3)與點(a,a3)處的彎曲程度相同B.若f(x)是二次函數(shù),則曲線y=f(x)的曲率在頂點處取得最小值C.若函數(shù)f(x)=sinx,則函數(shù)K(x)的值域為[0,1]D.若函數(shù)f(x)=(x>0),則曲線y=f(x)上任意一點的曲率的最大值為又K(x)=K(-x),所以K(x)為偶函數(shù),曲線在兩點的彎曲長度相同,故A正確;對于C,f/(x)=cosx,fⅡ(x)=-sinx,t≤1時,y=t單調遞增且y>01.5單調遞增且m>0,根據復合函數(shù)的單調性知y=(2-t2(1.5在0<t≤1時單調遞減,所以可知p(t)=在0<t≤1時單調遞增,對于D,f/(x)=-,fⅡ(x)=,K(x)==≤=,=f(x(在點x0處左可導.當函數(shù)y=f(x(在點x0處既右可導也左可導且導數(shù)值相等,則稱函數(shù)y=f(x(在點x0處可導.(2)已知函數(shù)f(x(=x2eax+1-x3sinx-ex2.(ⅰ)求函數(shù)g(x(=eax+1-xsinx-e在x=0處的切線方程;=-1,又g/(x(=2axeax+1-sinx-xcosx,則k=g/(0)=0,(ⅱ)f(x(=x2eax+1-x3sinx-ex2=x2(eax+1-xsinx-e(,,故f(x(與g(x(同號,g(x(=eax+1-xsinx-e,先考察g(x(的性質,由于g(x(為偶函數(shù),只需分析其在(0,+∞(上的性質即可,/(x(=2axeax+1-sinx-xcosx,g/(0(=0,,設m(x(=2axeax+1-sinx-xcosx,x∈(0,+∞(,則m/(x(=(2a+4a2x2(eax+1-2cosx+xsinx,m/(0(=2ae-2,則必存在一個區(qū)間(0,m(,使得m/(x(<0,則g/(x(在(0,m(單調遞減,又g/(0(=0,則g/(x(在區(qū)間(0,m(內小于0,則g(x(在(0,m(單調遞減,又g(0(=0,故g(x(在區(qū)間(0,m(內小于0,故f(x(在區(qū)間(0,m(內小于0,則x=0不可能為f(x(的極小值點.②當a≥時,g(x(=eax2+1-xsinx-e≥ex2+1-xsinx-e, 令h(x(=ex2+1-xsinx-e,h/(x(=ex2+1-sinx-xcosx,令s(x(=ex2+1-sinx-xcosx,/(x(=+x2x2+1-2cosx+xsinx,易知y=+x2x2+1在區(qū)間(0,+∞(上單調遞增,對y=-2cosx+xsinx,y/=2sinx+sinx+xcosx=3sinx+xcosx,則y/=3sinx+xcosx在區(qū)間(0,上大于0,故y=-2cosx+xsinx在區(qū)間(0,上單調遞增./(x(=+x2x2+1-2cosx+xsinx在區(qū)間(0,上單調遞增.又s/(x(≥0,故h/(x(在區(qū)間(0,上單調遞增,又h/(0(=0,故h/(x(≥0,故h(x(在區(qū)間(0,則g(x(=eax2+1-xsinx-e≥h(x(>0,x∈(0,,故x=0為f(x(的極小值點,所以a的取值范圍為a≥.31.(2024·貴州·模擬預測)定義:設f/(x)是f(x)的導函數(shù),fⅡ(x(是函數(shù)f/(x)的導數(shù),若方程fⅡ(x)=0有實數(shù)解x0,則稱點(x0,f(x0((為函數(shù)y=f(x)的“拐點”.經過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”且“拐點”就是三次函數(shù)圖象的對稱中心.已知函數(shù)f(x)=x3+bx2-x+a圖象的對稱中心為(0,1),則下列說法中正確的有()A.a=1,b=0B.函數(shù)f(x)C.函數(shù)f(x)有三個零點D.y=f(x)在區(qū)間(0,1)上單調遞減【詳解】由f(x)=x3+bx2-x+a,可得f/(x(=3x2+2bx-1,fⅡ(x(=6x+2b,因為函數(shù)f(x)=x3+bx2-x+a圖象的對稱中心為(0,O1(,由以上過程可知f(x)=x3-x+1,f/(x(=3x2-1,且當x<-或x>時,f/(x(>0;當-<x<時,f/(x(<0.于是f(x)在(-∞,-和,+∞(上都是增函數(shù),在(-,(上是減函數(shù),故選項D錯誤;因為f(x)=x3-x+1關于點(0,1(對稱,所以f(x)的極大值與極小值之和為2,故選項B正確;因為函數(shù)f(x)極小值f=>0,32.(2024·河南·三模)設函數(shù)f(x(的導函數(shù)為f/(x(,f/(x(的導函數(shù)為fⅡ(x(,fⅡ(x(的導函數(shù)為f川(x(.若f(x0(=0,f(x0((為曲線y=f(x(的拐點.(2)已知函數(shù)f(x(=ax5-5x3,若,f為曲線y=f(x(的一個拐點,求f(x(的單調區(qū)間與極值.(2)單調遞增區(qū)間為(-∞,-1(,(1,+∞(;單調遞減區(qū)間為[-1,1[,極大值為2,極小值為-2.(2)解:由函數(shù)f(x(=ax5-5x3,可得f/(x(=5ax4-15x2,fⅡ(x(=20ax3-30x=10x(2ax2-3(,因為,f為曲線y=f(x(的一個拐點,所以fⅡ=0,≠0,所以f/(x(=15x4-15x2=15x2(x2-1(.當x<-1或x>1時,f/(x(>0,則f(x(的單調遞增區(qū)間為(-∞,-1(,(1,+∞(;當-1≤x≤1時,f/(x(≤0,且f/(x(=0不恒成立,則f(x(的單調遞減區(qū)間為[-1,1[,x-1的極限即為01696年提出洛必達法則:在一定條件下通過對分子、分母分別求導再求極限)D.2【詳解】l=l=l=2,=.f(x(≥f成立,且3<cosx,x(2)l1+=e【詳解】(1)設F(x(=f(x(-f=x3-x,由于F(1(=-<0,所以f(x(≥f不成立,故f(x(=x3-3x不是區(qū)間[0,3[上的2階無窮遞降函數(shù).(2)設g(x(=(1+g(x(=ln(1+x(=,設h(x(=,則ll=l=1,f=,所以=?=-=>1,t(>f,所以f(t(>f>?>f,因為l=lcosx=1,要方法,其含義為:若函數(shù)f(x(和g((2)函數(shù)f(x(=1+x+++?+-(n≥2,n∈N*),判斷并說明f(x(的零點個數(shù);1,x=0.1,x=0.(2)f(x(=1+x+++?+-,f′(x(=1+x+++?+-,所以f′(x(-f(x(=--,=′=-.nsin2nsin, x即g(x(=sin x1,x=0.數(shù)為“不動點”函數(shù).函數(shù)f(x)=2x-sinx+【詳解】令f(x)=2x-sinx+cosx=x,即x-sinx+cosx=0,由題意可知即求函數(shù)g(x)=x-sinx+cosx的零點個數(shù),當x≥時,g(x)=x-、2sin(x-≥-、2>0,此時不存在零點;當x≤-π時,g(x)=x-、2sin(x-≤-π+、2<0,此時不存在零點;令g/令g/故g(x)在(-π,上有且僅有一個零點,綜上所述,f(x)=2x-sinx+cosx僅有一個不動點.37.(2024·廣東廣州·二模)若x0是方程f(g(x((=g(f(x((的實數(shù)解,則稱x0是函數(shù)y=f(x(與y=g(x(的“復合穩(wěn)定點”.若函數(shù)f(x(=ax(a>0且a≠1)與g(x(=2x-2有且僅有兩個不同的“復合穩(wěn)定點”,則a的取值范圍為()A.(0,,1(C.(1,2(D.(2,+∞(2x-2=2ax-2即(ax(2-2a2ax+2a2=0有兩個不同實根,令t=ax,則t2-2a2∴a2x-2=2ax-2,即(ax(2-2a2ax2-2a2t+2a2=0在(0,+∞(上有兩個不同實根,空間并構成了一般不動點定理的基石,得名于荷蘭數(shù)學家魯伊茲·布勞威爾(L.E.J.Brouwer).簡單地講0為該函數(shù)的不動點.(1)求函數(shù)f(x)=2x+x-3的不動點;(2)若函數(shù)g(x)=lnx-b有兩個不動點x1,x2,且x1<x2,若x2-x1≤2,求實數(shù)b的取值范圍.(1)log23(2)ln-≤b<-1(1)根據不動點定義求解即可;(2)根據題意問題轉化為方程b=lnx-x有兩個不等的實數(shù)根x1,x2,令φ(x(=lnx-x,利用導數(shù)判斷單調性所以函數(shù)f(x(的不動點為log23.(2)函數(shù)g(x(有兩個不動點x1,x2,即方程lnx-b=x,即b=lnx-x有兩個不等的實數(shù)根x1,x2,令φ(x(=lnx-x,則φ/(x(=-1=,x(<0,所以函數(shù)φ(x(在(0,1(上單調遞增,在(1,+∞(上單調遞減,所以b<-1,且x2-x1的值隨著b的值減小而增大,當x2-x1=2時,有兩式相減得ln=x2-x1=2,x2-x1=2,解得x1=,所以此時b=ln-,所以滿足題意的實數(shù)b的取值范圍為ln-≤b<-1.函數(shù)f(x(=ex-2x+ae-x(x≥0(.,證明>ln(n+1(.*【詳解】(1)當a=-1時,有f(x(=ex-2x-e-x(x≥0(,所以f/(x(=ex+-2(x≥0(,所以f/(x(=ex+-2≥2ex?-2=0所以f(x(≥f(x(min=f(0(=0,所以f(x(≥0得證.x-2x=x(x≥0(解的個數(shù)即為函數(shù)f(x(的不動點的個數(shù),化ex-2x=x(x≥0(為ex-3x=0(x≥0(,令g(x(=ex-3x(x≥0(,xln3(ln3,+∞(x(-0+g(x(3-3ln3所以g(x(在[0,ln3(上有唯一一個零點,又g(5(=e5-15>25-15=17>0,所以g(x(在(ln3,+∞(上有唯一一個零點,x-2x-e-x>0,x∈(0,+∞(,令x=lns,s>1,則s-2lns-s-1>0,即s->2lns,s>1,-1+1-n11+1nn1+1n>ln(1+,n2+n所以1>ln=ln(n+1(-n2+n所以1+1+?+1>ln2-ln1+ln3-ln2+?+ln(n+1)-lnn=ln(n+1(,即2+12+12+21+1+?+1>ln(n+1(.2+12+12+20為函數(shù)f(x)的一(2)若f(x(=(a+1(x-+(a>-1),討論集合B的子集的個數(shù).(1)令g(x)=f(x)-x=e-x,求導得g(x)=e-1,所以g(x)min=g(e)=0,所以g(x)有唯一零點,所以集合A={x|f(x)=x{中有且僅有一個元素;(2)當a>-1時,由函數(shù)f(x)=(a+1)x-+,可得導函數(shù)f(x)=(a+1)++×>0,所以f(x)在(0,+∞)上即f(x)穩(wěn)定點與f(x)的不動點等價,故只需研究f(x)=(a+1)x-+的不動點即可;令F(x)=f(x)-x=lnx+ax-,(x>0),且F(e2)=lne2+a×e2->0,所以此時f(x)有唯一不動點;故F(x)max=F(x1)=lnx1+ax1-=lnx1--,設h(x)=lnx--,則h(x)在(0,+∞)上單調遞增,且h(e2)=lne2--,又a=-×-在x1∈(0,+∞)時單調遞增,故(i)當F(x)max=lnx1--=0時,即x1=e2,(ii)當F(x)max=lnx1--<0,即x1<e2,此時-1<a<-,方程F(x)=0無解,即f(x)無不動點,所以集合B的子集有1個;(iii)當F(x)max=lnx1-->0時,即x1>e2,此時-<a<0,方程F(x)=0有兩個解,即f(x)有當-<a<0時,集合B的子集有4個.x,x>00x>0x<0x,x>0x<0Lx+a,f(x+1(=1恰有3個不等實數(shù)根,①當x>0時,x+1>0,方程f(x(f(x+1(=1可化為e2x+1=1,解得x=-,這與x>0不符,因此在(0,+∞(內f(x(f(x+1(=1沒有實數(shù)根;②當-1<x<0時,x+1>0,方程f(x(f(x+1(=1可化為=1,該方程又可化為a=ex+1-x.設k(x(=ex+1-x,則k/(x(=ex+1-1,f(x(f(x+1(=1在(-1,0(內恰有一個實數(shù)根;f(x(f(x+1(=1在(-1,0(內沒有實數(shù)根.③當x=-1時,x+1=0,f(x+1(沒有意義,所以x=-1不是f(x(f(x+1(=1的實數(shù)根.?x+ax+a+1④當x<-1時,x+1<0,方程?x+ax+a+1化為x2+(2a+1(x+a2+a-1=0,于是此方程在(-∞,-1(內恰有兩個實數(shù)根,1+則有{-2a1<-1,解得a>(2a+1(21+則有{-2a1<-1,解得a>1-(2a+1(+a2+a-1>0因此當a>1+25時,方程f(x(f(x+1(=1在(-∞,-1(內恰有兩個實數(shù)根,當0<a≤時,方程f(x(f(x+1(=1在(-∞,-1(內至多有一個實數(shù)根,x,h(x)=x+a(a>0).-3,-1(;即(2+a((2-2+a(=1,整理a2+(22-2(a+1-22=0,即(a+22-1((a-1(=0,解得a=1,xx(=ex(x+1)2+2ex(x+1(=ex(x+1((x+3(,x>0x<0x,x>0x<0Lx+a,+1(=1恰有3個不等實數(shù)根,①當x>0時,x+1>0,方程ω(x(ω(x+1(=1可化為e2x+1=1,解得x②當-1<x<0時,x+1>0,方程ω(x(ω(x+1(=1可化為=1,該方程又可化為a=ex+1-x.設k(x(=ex+1-x,則k/(x(=ex+1-1,x(ω(x+1(=1在(-1,0(內沒有實數(shù)根.③當x=-1時,x+1=0,ω(x+1(沒有意義,所以x=-1不是ω(x(ω(x+1(=1的實數(shù)根.化為x2+(2a+1(x+a2+a-1=0,于是此方程在(-∞,-1(內恰有兩個實數(shù)根,則有{-2<-1,解得a>2,-4(a2+a-1則有{-2<-1,解得a>2,1-(2a+1(+a2+a-1>043.(2024·貴州貴陽·一模)英國數(shù)學家泰勒發(fā)現(xiàn)了如下公式:ex=1+x+++?++?其中n!=1×2×3×4×?×n,e為自然對數(shù)的底數(shù),e=2.71828??.以上公式稱為泰勒公式.設f(x(=x≥1+x;<g(x(;≥h(0(=0,即ex≥1+x.x=1+x+++++?++?,①于是e-x=1-x+-+-+?+(-1)n+?,②f(x(==x+++?+-+?,g(x(==1+++?+-+?,即<g(x(.所以當a≤1時,G/(x(≥1-a≥0,所以F/(x(在R上單調遞增.lna(=(-a=-a(<0,x(在(-lna,lna(上單調遞減.所以當-lna<x<0時,F(xiàn)/(x(>0;當0<x<lna時,F(xiàn)/(x(<0.所以F(x(在(-lna,0(上單調遞增,在(0,lna(上單調遞減.性.可導,則有如下公式xn=ffⅡf川x3+?+ex=1+x+x4+?x,e-xf(n((x(=ex,f(n((0(=1,由泰勒展開式可得ex=1+x+x2+x3+x4+?;x=1+x+x2+x3+x4+x5?,e-x=1-x+x2-x3+x4-x5+?,所以f(x(=2+x2+x4+x6+?+1-ax2,則f/(x(=x+x3+x5+?-2ax=x+x2+x4+?-2a(,則當x在0的附近時,+x2+x4+?-2a≥0即可,x=1+x+x2+x3+x4+x5?,所以e2=1+2+122+123+124+5+6+4+5+6+7+=(7+t(4,3++C?0.3843++C?0.414所以k=30.f(x(的四階導數(shù)??,一般地,函數(shù)f(x(的n-1階導數(shù)的導數(shù)叫做函數(shù)f(x(的n階導數(shù),記作f(n((x(=[fn-1(x([,,n≥4;f(x0(+(x-x0(+(x-x0(2+?+(x-x0(n+?,我們將g(x(稱為函數(shù)f(x(在點x=x0處的泰勒展開式.例如f1(x)=ex在點x=0處的泰勒展開式為g1(x)=1+x+x2+?+xn+?(1)求出f(x)=cosx在點x=0處的泰勒展開式g(x(;?(1-((1+試求的值.【答案】(1)cosx=1-+-+?++?(3)由(1)可得-sinx=-+-+?+-+?,進而可得++?,結合已知可得結論.(x)=-sinx,f''(x(=-cosx,?,所以f(0)=cos0=1,f,(0)=-sin0=0,f''(x(=-cos0=-1,?,所以cosx=1-+-+?++?(2)由(1)可得cos0.3=1-+-+?++?≈1-+=1-0.045+(3)因為=(1-1+1-1+1-1+?=(1-1-??①,對cosx=1-+-+?++?,兩邊求導可得:-sinx=-+-+?+-+?,鍵在于用n階泰勒展開式表示.展開式為:f(x(=f(0(+f/(0(x+x2+?+xn+?=xn,其中f(n((0(表示f(x(的n階導數(shù)在0處的取值,我們稱xn為f(x(麥克勞林展開式的第n+1項.例如:ex=1+(2)數(shù)學競賽小組發(fā)現(xiàn)ln(1+x(的麥克勞林展開式為ln(1+x(=x-這意味著:當x>0時,ln(1+x(>x-你能幫助數(shù)學競賽小組完成對此不等式的證明嗎?當x≥1時,若ex+lnx++mx,求整數(shù)m的最大值.3x(=cosx,f(2((x(=-sinx,f(3((x(=-cosx,所以第2項x1=x,x3=-因為x>0,所以g/(x(=>0,g(x(單調遞增,所以g(x(>g(0(=ln1-0+0=0,所以ln(1+x(>x-.1+ln1+>+m成立,得出m<e+,m的最大整數(shù)不超過3.當m=3時,因為x≥1,所以ex>1+x++,所以ex+lnx+--3x>1+x+++lnx+--3x=+lnx+-2x,所以ex+lnx+>+3x,故當x≥1時,ex+lnx+>+3x,所以整數(shù)m的最大值為3.47.(2024·河南周口·模擬預測)已知函數(shù)f(x(=(x-1(ln(1-x(-x-cosx.(1)求函數(shù)f(x(在區(qū)間(0,1(上的極值點的個數(shù).(2”是一個求和符號,例如i=1+2+?+n,=2x+2x2+?+2xn,等等.英國數(shù)學家布典應用. ,在構造相應函數(shù)多次求導即可得解由lnn=可將原問題x(=ln(1-x(+(x-1(×-×(-1(-1+sinx=ln(1-x(+sinx,令g(x(=ln(1-x(+sinx,則g/(x(=--+cosx,則f/(x(<f/(0(=ln1-0=0,令h(x(=,其中n→+x>0,=-1+x2(-1)n+令m(x(=μ/(x(=-sinx+x++-,則m/(x(=-cosx+1++-,故m/(x(≥0恒成立,即m(x(在(0,+∞(上單調遞增,故m(x(>m(0(=-sin0+0+0+0=0,即μ/(x(>0在(0,+∞(上恒成立,即μ(x(在(0,+∞(上單調遞增,故μ(x(>μ(0(=1-1+0+0+0=0,即h/(x(>0在(0,+∞(上恒成立,故h(x(在(0,+∞(上單調遞增,則h(x(>h(0(=0,即=ln(1-x(+sinx<0, 故只需證sin>-,令n(x(=sinx-x+,x∈(0,+∞(,則n/(x(=cosx-1+,x(=cosx-1+即cosx-1+>0,即n/(x(>0,故n(x(在(0,+∞(上單調遞增,故n(x(=sinx-x+>n(0(=0,即sin即得證.函數(shù)h(x(=,得到h/(x(=cosx-1+即可借助導數(shù)求單48.(2024·全國·模擬預測)已知函數(shù)f(x(=(x-a(e-x+x2-2x,g(x(=xe-x-ex-1-x3+ax2-f(x(,且f(x(在x=0處取得極大值.(1)求a的值與f(x(的單調區(qū)間.(1)a=1,f(x(的單調遞增區(qū)間為(-∞,0(和(2,+∞(,單調遞減區(qū)間為(0,2(.(2)猜想f/(c(=,m=(1)根據f(x(在x=0處取得極大值得f/(0(=0,求出a=1,利用導數(shù)求出函數(shù)f(x(的單調區(qū)間;由f(x(=(x-a(e-x+x2-2x,得f/(x(=(a+1-x(e-x+x-2.則f/(x(=(2-x(e-x+x-2=(x-2((1-e-x(.令f/(x(>0,即(x-2((1-e-x(>0,解得x∈(-∞,0(∪(2,+∞(,令f/(x(<0,即(x-2((1-e-x(<0,解得x∈(0,2(,所以f(x(在(-∞,0(和(2,+∞(上分別單調遞增,在(0,2(上單調遞減.所以a=1滿足題意,f(x(的單調遞增區(qū)間為(-∞,0(和(2,+∞(,單調遞減區(qū)間為(0,2(.=.因為k=表示f(x(的圖像上兩端點A,B在該點處的切線與f(x(的圖像上兩端點A=f/(c(,-x-ex-1-x3+x2+2x,則g/(x(=-(e-x+ex-1(-x2+x+2=-(e-x+ex-1(-(x-2+≤-2e-x?-0+=-,又g/(x(≤-,所以kAB=g/(c(≤-.lnx+b2(x-4)eax-x3+x2.<x2<x3,求證【詳解】(1)當a=-1,b=0時f(x(=x2則f(x0(===15,即f(x0(=x0=15,解得x0=4(2)當a=-1,b=1時f(x)=(x-4(e-x-x3+3x2,不妨設A(x4,f(x4((,B(x5,f(x5((,x4<x5,則kAB=,又f(x)=(5-x(e-x-x2+6x,令F(x(=f(x)=(5-x(e-x-x2+6x,則F(x(=(x-6(e-x-x+6=(x-6((e-x-1(,-x-1<0恒成立,所以當0<x<6時F(x(>0,當x>6時F(x(<0,所以F(x(在(0,6(上單調遞增,在(6,+∞(上單調遞減,所以F(x(在x=6處取得極大值,即最大值,所以F(x(≤F(6(=18-e-6,所以f(x(≤18-e-6,由拉格朗日中值定理可知必存在c∈(x4,x5(使得f(c)=,即f(c)=kAB,又f(x(≤18-e-6,所以kAB≤18-e-6,即函數(shù)f(x)在區(qū)間(0,+∞)圖象上任意兩點A,B連線的斜率不大于18-e-6;(3)當a=1,b=-1時f(x)=lnx+(x-4)ex-x3+x2,∈(x2,x3(,使得f(c1)=,f(c2)=,所以只需證明f(c1)≥f(c2),即證明f(x(在,1(上單調遞減,又f(x)=xlnx+(x-3)ex-x2+2x,令G(x(=f(x)=xlnx+(x-3)ex-x2+2x,則G(x(=lnx+(x-2)ex-x+3,令m(x(=G(x(=lnx+(x-2)ex-x+3,則m(x(=+(x-1)ex-1=(x-1((ex-,令n(x(=ex-,x∈,1(,則n(x(=ex+>0,則n(x(在,1(上單調遞增,又n=e,n(1(=e-1>0,∈,1(使得n(x0(=0,所以當x∈,x0(時n(x(<0,則m(x(>0,即m(x(單調遞增,1(時n(x(>0,則m(x(<0,即m(x(單調遞減,所以m(x(在x0處取得極大值,即最大值,所以m(x(≤m(x0(=lnx0+(x0-2(ex0-x0+3=-x0+-x0+3-2x+4x0-2x0x0即f(x(在,1(上單調遞減,命題得證.(2)構造新的函數(shù)h(x(;(3)利用導數(shù)研究h(x(的單調性或最值;題.50.(23-24高二下·江西九江·階段練習)已知函數(shù)f(x(=x2-3x+alnx,a∈R.(1)當a=1時,求函數(shù)f(x(的在點(1,f(1((處的切線;(2)若函數(shù)f(x(在區(qū)間[1,2[上單調遞減,求a的取值明理由.(1)y=-2(2)a≤-2f(x(不是(1)利用導數(shù)的幾何意義求得函數(shù)f(x(的在點(1,f(1((處的斜率即可求解;(2)利用導數(shù)的幾何意義可得f(x(=≤0在[1,2[上恒成立,參變分離可得a≤(-2x2+3x(min(3)假設函數(shù)f(x(是“拉格朗日中值函數(shù)”,設A(x1,y1(,B(x2,y2(是f(x(上不同的兩點,且0<x1<x2,代入(1)由題意可知當a=1時,f(x(=x2-3x+lnx,f(1(=1-3+0=-2,f(x(=2x-3+,所以函數(shù)f(x(的在點(1,-2(處切線的斜率k=f(1(=2-3+1=0,所以函數(shù)f(x(的在點(1,-2(處的切線為y=-2.(2)由題意可得f(x(=2x-3+=,即a≤-2x2+3x在x∈[1,2[恒成立,只需a≤(-2x2+3x(min即可,又因為當x∈[1,2[時y=-2x2+3x∈[-2,1[,所以a≤-2.2(是f(x(上不同的兩點,且0<x1<x2,由題意可得f(x1(=x-3x1+alnx1,f(x2(=x-3x2+alnx2,則kAB==-=x2+x1-3+,函數(shù)f(x(在拉格朗日平均值點處的切線斜率k=f/=x1+x2-3+,令=t(t>1(,上式化為lnt==2-,即lnt+=2,所以在(1,+∞(上不存在t使得lnt+=2,即不存在這樣的A,B兩點使得f/=;f/(c((b-a(成立.設f(x(=ex+x-4,其中e為自然對數(shù)的底數(shù),e≈2.71828.易知,f(x(在實數(shù)集Rf(x(<1;(2)從圖形上看,函數(shù)f(x(=ex+x-4的零點就是函數(shù)f(x(的圖象0作為r的初始近似值,使得0<f(x0(<,然后在點(x0,f(x0((處作曲線y=f(x(1是r的一次近似值;在點(x1,f(x1((處作曲線y=f(x(的,?,xn,?.①當xn>r時,證明:xn>xn+1>r;證明:0<xn-r<.又由f(r)=0,得f(x)=f(x)-f(r),根據拉格明日中值定理,存在c∈(r,x),f(x)=f(x)-f(r)=f/(c)(x-r)<f/(c)=(ec+1),因為r∈(1,,所以c<x<r+<+<2,(ec+1)<(e2+1)<1,所以0<f(x)<1.(2)①先證xn>xn+1,在(xn,f(xn))處,曲線y=f(x)的切線方程為y-f(xn(=f/(xn((x-xn(,令y=0,得x=xn-,即xn+1=xn-,由于xn>r,f(x)在R上單調遞增,則f(xn(>f(r(=0,而f/(x(=ex+1>0,則有>0,所以xn+1=xn-<xn,即xn>xn+1;n+1>r,由于f(x)在R上單調遞增,只需證f(xn+1(>f(r(=0,曲線y=f(x)的切線方程為y-f(xn(=f/(xn((x-xn(,即y=f(xn(+f/(xn((x-xn(,根據xn+1的定義,f(xn(+f/(xn((xn+1-xn(=0,令h(x(=f(x(-f(xn(-f/(xn((x-xn(,x∈[xn+1,xn[,hx(=f/(x(-f/(xn(=ex-ex<0,x∈[xn+1,xn[,于是h(x)在[xn+1,xn]上單調遞減,而h(xn(=f(xn(-f(xn(-f/(xn((xn-xn(=0,因此h(xn+1(>0,又h(xn+1(=f(xn+1(,即f(xn+1(>0,所以xn+1>r,綜上xn>xn+1>r.②由f(x)在R上單調遞增,0<f(x0(<,得x0>r,則x0>x1>x2>?>xn>?>r>1,由①0<f(xn(<1x(====<<<,n+1-r=φ(xn(-φ(r(=φ/(c)(xn-r(<(xn-r(,n∈N,0-r820-r82-r11-r<8即<,于是<,累乘得<,所以xn-r<(x0-r(<1-r<8|???n-1-r8n-1-r8程為:y-f(x0)=f/(x0)(x-x0).ff(x(=ln(x+1(在x=0處的[1,1[階帕德近似為R(x(=.注:fⅡ(x(=[f/(x([/,f川(x(=(4(x=[f川(x([/,f(5(x=[f(4(x[/...(2)求證:(x+b(f>1;bb=等式.x(=∵f(x(=ln(x+1(,則f/(x(=,fⅡ(x(=-t(=-=>0t>1∴(x+ln(1+>1成立,即(x+b(f>1成立.x<e<(1+x+成立,則至少有1+>0,即x>0或x<-1首先考慮e<(1+x+(1+x+>1,即(x+ln(1+>1,再考慮(1+x<e,該不等式等價于xln(1+<1,'(x(<0當x∈(-∞,-1(時由ln(1+<,可知xx<e<(1+x+的解集為(0,+∞(.算機數(shù)學中有著廣泛的應用.已知函數(shù)f(x)在x=0處的[m,n[階帕德近似定義為:R(x)=中f(2)(x)=[f/(x)[/,f(3)(x)=[f(2)(x)[/,?,f(m+n)(x)=[f(m+n-1)(x)[/.已知f(x)=ln(x+1)在x=0處的[2,2[階帕德近似為R(x)=a+bx+2.1+x+2(2)設h(x(=f(x(-R(x(,證明:xh(x)≥0; λ(3)設x1<x2<x3≤0及λ>0進行討論,結合函數(shù)單調性與零點的存在性定理計算可得當且=,(2)依題意,h(x)=f(x)-R(x)=ln(1+x)-,h/(x)=-=≥0,(3)不妨設x1<x2<x3,令t(x)=lnx-λ(x-,tI(x)=-λ(1+=(x>0),當λ>0時,令s(x)=-λx2+x-λ,其判別式Δ=1-4λ2,若Δ=1-4λ2>0,即0<λ<,tI(x)=0存在兩個不等正實根r1,r2(r1<r2(,r1,r2(r2,+∞(r1(<0,t(r2(>0,所以t(λ4(=lnλ4-λ(λ4->2--λ5+=(2-λ5(+-2(>0,t(x1(=0,又因為t=ln-λ-x(=-lnx+λ(x-=-t(x),故當且僅當0<λ<時,lnx=λ(x-存在三個不等實根,且滿足x1<x2=1<x3,且x1=,因此,lnx>(x>1),故lnx3=λ(x3->,化簡可得:<=x3+4+=x1+x2+x3+3,函數(shù)的方法.給定兩個正整數(shù)m,n,函數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x(=x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,??已知函數(shù)f(x(=ln(x+1(.②若f(x(-m+1(R(x(≤1-cosx恒成立,求實數(shù)m的取值范圍.O②由已知令h(x(=ln(x+1(-mx+cosx-1,且h(0(=0,所以x=0是h(x(的極大值點,求導得到h/(x(=-m-sinx,故h/(0(=1-m=0,m=1,得到m之后寫出h(x(=ln(x+1(-x+cosx-1,然后求由f(0(=R(0(得a0=0,所以R(x(=,所以ln1.1=f(0.1(≈R(0.1(==≈0.095.因為F/(x(=-=<0,所以F(x(在x∈(-1,0(及(0,+∞(上均單調遞減.-1,0(,F(xiàn)(x(>F(0(=0,即>ln(x+1(, ln(x+1(ln(x+1(,ln(x+1(ln(x+1(,②由f(x(-m+1(R(x(≤1-cosx得ln(x+1(-mx+cosx-1≤0在(-1,+∞(上恒成立,令h(x(=ln(x+1(-mx+cosx-1,且h(0(=0,所以x=0是h(x(的極大值點,又h/(x(=-m-sinx,故h/(0(=1-m=0,則m=1,當m=1時,h(x(=ln(x+1(-x+cosx-1,所以h/(x(=-sinx-1=-sinx-,-1,0(時,-sinx>0,->0,則h/(x(>0,故h(x(當x∈(0,+∞(時,h(x(=[ln(x+1(-x[+(cosx-1(,令φ(x(=ln(x+1(-x,因為φ/(x(=-1<0,所以φ(x(在(0,+∞(上單調遞減,故當x∈(0,+∞(時,h(x(=[ln(x+1(-x[+(cosx-1(<0,綜上,當m=1時,f(x(-m+1(R(x(≤1-cosx恒成立.(1)直接構造函數(shù)法:證明不等式f(x)>g(x)(或f(x)<g(x))轉化為證明f(x)-g(x)>0(或f(x)-g(x)<55.(23-24高二下·湖北·期中)帕1+b1x+?+bnxn,,,a0+a1x+?+amxm,且滿足:f(0(=R(0(f/(0(=R/(0(fⅡ(01+b1x+?+bnxn,,,fx(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[fⅡ(x([/,f(5((x已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似為g(x(=.≥g(x(;0(列方程組求解可得;(1)由f(x(=ln(x+1(,g(x(=,有f(0(=g(0(,可知fl(x(=,fⅡ(x(=-,gl(x(=,gⅡ(x(=,令φ(x(=f(x(-g(x(=ln(x+1(-(x≥0(,則φl(x(=-=≥0,所以φ(x(在其定義域(-1,+∞(內為增函數(shù),又φ(0(=f(0(-g(0(=0,∴x≥0時,φ(x(=f(x(-g(x(≥φ(0(=0,得證.(3)h(x(=f(x(-g(x(=ln(x+1(-的定義域是(-1,+∞(,hl(x(=-=.①當a≤2時,hl(x(≥0,所以h(x(在(-1,+∞(上單調遞增,且h(0(=0,所以h(x(在(-1,+∞(上存在1個零點;(x(=x2+(4-2a((x+1(=x2+(4-2a(x+(4-2a(,由t(x(=0,得x1=(a-2(-、a2-2a〈0,x2=(a-2(+a2-2a〈0.又因為t(-1(=1>0,t(0(=4-2a<0,所以x1∈(-1,0(,x2∈(0,+∞(.x(-1,x1(x1(x1,x2(x2(x2,+∞(hl(x(+0-0+h(x(極大值h(x1(極小值h(x2(,x2(時,因為h(0(=0,所以h(x(在(x1,x2(上存在1個零點,且h(x1(>h(0(=0,h(x2(<h(0(=0;當x∈(-1,x1(時,因為h(e-a-1(=lne-a-=-<0,-1<e-a-1<0,而h(x(在(-1,x1(單調遞增,且hl(x1(=0,而h(e-a-1(<0,故-1<e-a-1<x1,所以h(x(在(-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論