版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省景東一中2025屆高考壓軸卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖像向右平移個(gè)單位長度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.2.若變量,滿足,則的最大值為()A.3 B.2 C. D.103.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.4.已知,則下列關(guān)系正確的是()A. B. C. D.5.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對稱,且,若,則()A.0 B.1 C.673 D.6746.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.48.已知,,若,則向量在向量方向的投影為()A. B. C. D.9.已知集合,則()A. B.C. D.10.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.11.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.12.若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線方程為__________.14.在平面直角坐標(biāo)系中,雙曲線(,)的左頂點(diǎn)為A,右焦點(diǎn)為F,過F作x軸的垂線交雙曲線于點(diǎn)P,Q.若為直角三角形,則該雙曲線的離心率是______.15.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____16.已知函數(shù)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,設(shè)、、分別為角、、的對邊,記的面積為,且.(1)求角的大?。唬?)若,,求的值.18.(12分)設(shè)等差數(shù)列的首項(xiàng)為0,公差為a,;等差數(shù)列的首項(xiàng)為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計(jì)算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.20.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點(diǎn),求實(shí)數(shù)m的取值范圍.21.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點(diǎn),.(Ⅰ)證明:;(Ⅱ)若為上的動點(diǎn),求與平面所成最大角的正切值.22.(10分)已知動圓Q經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)?,所以的最小值?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.2、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.3、A【解析】
由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點(diǎn)的弦長求離心率.弦過焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長.4、A【解析】
首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因?yàn)?,,,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進(jìn)行化簡可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.6、A【解析】
觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積。【詳解】設(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c(diǎn)睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。7、C【解析】
根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.8、B【解析】
由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題9、B【解析】
先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.10、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.12、C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導(dǎo)數(shù)的幾何意義,對求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題.14、2【解析】
根據(jù)是等腰直角三角形,且為中點(diǎn)可得,再由雙曲線的性質(zhì)可得,解出即得.【詳解】由題,設(shè)點(diǎn),由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點(diǎn),過點(diǎn),且軸,,可得,,整理得:,即,又,.故答案為:【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),是??碱}型.15、【解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)?,所以,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問題,極值點(diǎn)為導(dǎo)數(shù)的變號零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.16、【解析】
當(dāng)時(shí),轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時(shí),,故不是函數(shù)的零點(diǎn);當(dāng)時(shí),即,令,,,當(dāng)時(shí),;當(dāng)時(shí),,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由三角形面積公式,平面向量數(shù)量積的運(yùn)算可得,結(jié)合范圍,可求,進(jìn)而可求的值.(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因?yàn)?,所以,可得:.?)中,,所以.所以:,由正弦定理,得,解得,【點(diǎn)睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運(yùn)算,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.18、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個(gè)元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因?yàn)榧现泄灿?個(gè)元素,所以集合中至少存在兩個(gè)元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個(gè)元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負(fù)整數(shù),設(shè),則,且,,,,所以,當(dāng),時(shí),對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設(shè)命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因?yàn)?,,所以且?的倍數(shù),因?yàn)椋?,所以,所以矛盾,即假設(shè)不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因?yàn)?,,,,所以.【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題.19、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因?yàn)?,故?根據(jù)余弦定理:,..【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.20、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點(diǎn)睛】本題考查函數(shù)的局部對稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.21、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長為2的菱形,平面,,易證平面,可得;(Ⅱ)連結(jié),由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點(diǎn),∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結(jié),由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當(dāng)且僅當(dāng)最短,即時(shí)最大,依題意,此時(shí),在中,,∴,,∴與平面所成最大角的正切值為.考點(diǎn):1.線線垂直證明;2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇聯(lián)談判協(xié)議書
- 苗木裝卸合同范本
- 葡萄管理協(xié)議書
- 融創(chuàng)集團(tuán)協(xié)議書
- 認(rèn)證費(fèi)用協(xié)議書
- 設(shè)施拆除合同范本
- 評審勞務(wù)協(xié)議書
- 試驗(yàn)費(fèi)協(xié)議合同
- 工廠回收合同范本
- 工人復(fù)工協(xié)議書
- 托福真題試卷(含答案)(2025年)
- 2025年廣東省第一次普通高中學(xué)業(yè)水平合格性考試(春季高考)語文試題(含答案詳解)
- 2026廣東深圳市檢察機(jī)關(guān)招聘警務(wù)輔助人員13人筆試考試備考試題及答案解析
- 雨課堂學(xué)堂在線學(xué)堂云《金融風(fēng)險(xiǎn)管理:量化投資視角( 暨南)》單元測試考核答案
- 臨床試驗(yàn)盲法方案設(shè)計(jì)的法規(guī)符合性優(yōu)化
- 留聲機(jī)美術(shù)課件
- 2026屆廣東深圳市高一生物第一學(xué)期期末監(jiān)測試題含解析
- 直播基地的管理制度
- 拍賣公司計(jì)劃書
- 水滸傳課件講宋江
- OA系統(tǒng)使用權(quán)限管理規(guī)范
評論
0/150
提交評論