版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市育英學(xué)校2025屆高三最后一模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.2.如圖所示的程序框圖,當(dāng)其運行結(jié)果為31時,則圖中判斷框①處應(yīng)填入的是()A. B. C. D.3.已知函數(shù)滿足=1,則等于()A.- B. C.- D.4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.5.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.6.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.7.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為8.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.9.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.10.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.11.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.12.已知,則的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個整數(shù),則當(dāng)n最小時實數(shù)a的值為_____.14.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.15.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標(biāo)準(zhǔn)方程為________.16.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),為數(shù)列的前項和,記,證明:.18.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.19.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.20.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計獲獎6不獲獎合計400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點坐標(biāo)為,圓與直線交于兩點,求的值.22.(10分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機變量服從正態(tài)分布,則.2、C【解析】
根據(jù)程序框圖的運行,循環(huán)算出當(dāng)時,結(jié)束運行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運行結(jié)果為31,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.3、C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設(shè)的最小正周期為,因為,所以,所以,所以,又,所以當(dāng)時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學(xué)生分析能力和計算能力,是一道難度較大的題目.4、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計算它的體積即可.5、C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當(dāng)且僅當(dāng),時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.6、A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.7、C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.8、A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.9、B【解析】
先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.10、D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設(shè)切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.11、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.12、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
討論三種情況,a<0時,根據(jù)均值不等式得到a(﹣a)≤﹣14,計算等號成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時,[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時取等號,∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時,A中共含有最少個整數(shù),此時實數(shù)a的值為﹣1;②a=0時,﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時,[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.14、【解析】
計算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.15、【解析】
設(shè)雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.16、【解析】
結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)見解析【解析】
(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項相消法求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.18、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1),(2)證明見解析【解析】
(1)利用首項和公差構(gòu)成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據(jù)以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時,∴,.當(dāng)時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.【點睛】本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項公式時,一定要注意驗證是否成立;(2)當(dāng)一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.20、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據(jù)二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構(gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎的人數(shù)為人,因為參考的文科生與理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運輸企業(yè)供應(yīng)鏈管理管理制度
- 2026年農(nóng)機站農(nóng)機配件倉庫火災(zāi)應(yīng)急救援預(yù)案演練方案
- 醫(yī)療法律法規(guī)試題及答案
- 鄉(xiāng)村醫(yī)生培訓(xùn)考試試題及答案合集
- 機械電工證考試試題及答案
- 滬科版八年級物理全一冊《浮力》單元精講與探究:基于UBD理念的差異化深度學(xué)習(xí)方案
- 高中歷史(高二)自主導(dǎo)學(xué)課堂教學(xué)改革實踐:《歷史核心素養(yǎng)導(dǎo)向的知識建構(gòu)與思維培育》教學(xué)設(shè)計
- 護理學(xué)科 高職大二《急性結(jié)石性膽囊炎患者護理》教學(xué)設(shè)計
- 立足單元整合促進語用生成-人教版(一年級起點)三年級英語上冊 Revision 1 Lesson 3 綜合復(fù)習(xí)課教學(xué)設(shè)計
- 轉(zhuǎn)正安全考試試題及答案
- 浦發(fā)銀行貸款合同模板
- 語文七年級下字帖打印版
- 基于機器學(xué)習(xí)的缺陷預(yù)測技術(shù)
- 單片機原理及應(yīng)用課設(shè)計
- 08年常德地理會考試卷及答案
- QC成果提高衛(wèi)生間防水合格率匯報
- GB/T 34956-2017大氣輻射影響航空電子設(shè)備單粒子效應(yīng)防護設(shè)計指南
- GB/T 31831-2015LED室內(nèi)照明應(yīng)用技術(shù)要求
- 山東省實習(xí)律師面授考試往期考題及法條匯編
- 股東名冊(范本)
- 天獅宜首康多功能保健儀課件
評論
0/150
提交評論