版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
UnravelingMeta-Learning:UnderstandingFeature
RepresentationsforFew-ShotTasks
HarichandanaVejendla
(50478049)
1
2
Definitions
?Meta-Learning:Meta-learningdescribesmachinelearningalgorithmsthatacquireknowledgeandunderstandingfromtheoutcomeofothermachinelearningalgorithms.Theylearnhowtobest
combinethepredictionsfromothermachine-learningalgorithms.
?Few-shotLearning:Few-ShotLearningisaMachineLearningframeworkthatenablesapre-trainedmodeltogeneralizeovernewcategoriesofdatausingonlyafewlabeledsamplesperclass.
?FeatureExtraction:Featureextractionisaprocessofdimensionalityreductionthatinvolvestransformingrawdataintonumericalfeaturesthatcanbeprocessed.
?Featureclustering:Featureclusteringaggregatespointfeaturesintogroupswhosemembersaresimilartoeachotherandnotsimilartomembersofothergroups.
?FeatureRepresentation:RepresentationLearningorfeaturelearningisthesubdisciplineofthe
machinelearningspacethatdealswithextractingfeaturesorunderstandingtherepresentationofadataset.
3
Introduction
?TransferLearning:Pre-trainingamodelonlargeauxiliarydatasetsandthenfine-tuningtheresultingmodelsonthetargettask.Thisisusedforfew-shotlearningsinceonlyafewdatasamplesareavailableinthetarget
domain.
?Transferlearningfromclassicallytrainedmodelsyieldspoorperformanceforfew-shotlearning.Recently,few-shotlearninghasbeenrapidlyimprovedusingmeta-learningmethods.
?Thissuggeststhatthefeaturerepresentationslearnedbymeta-learningmustbefundamentallydifferentfromfeaturerepresentationslearnedthroughconventionaltraining.
?Thispaperunderstandsthedifferencesbetweenfeatureslearnedbymeta-learningandclassicaltraining.
?Basedonthis,thepaperproposessimpleregularizersthatboostfew-shotperformanceappreciably.
4
Meta-LearningFramework
?Inthecontextoffew-shotlearning,theobjectiveofmeta-learningalgorithmsistoproduceanetworkthatquicklyadaptstonewclassesusinglittledata.
?Meta-learningalgorithmsfindparametersthatcanbefine-tunedinafewoptimizationstepsandonafewdatapointsinordertoachievegoodgeneralization.
?Thetaskischaracterizedasn-way,k-shotifthemeta-learningalgorithmmustadapttoclassifydatafromTiafterseeingkexamplesfromeachofthenclassesinTi.
Algorithm
5
6
AlgorithmDescription
?Meta-learningschemestypicallyrelyonbi-leveloptimizationproblemswithaninnerloopandanouterloop.
?Aniterationoftheouterloopinvolvesfirstsamplinga“task,”whichcomprisestwosetsoflabeleddata:thesupportdata,Tis,andthequerydata,Tiq.
?Intheinnerloop,themodelbeingtrainedisfine-tunedusingthesupportdata.
?Fine-tuningproducesnewparametersθi,thatareafunctionoftheoriginalparametersandsupportdata.
?Weevaluatethelossonthequerydataandcomputethegradientsw.r.ttheoriginalparametersθ.Weneedtounrollthefine-tuningstepsandbackpropagatethroughthemtocomputethegradients.
?Finally,theroutinemovesbacktotheouterloop,wherethemeta-learningalgorithmminimizeslossonthequerydatawithrespecttothepre-fine-tunedweights.Basemodelparametersareupdatedusingthe
gradients.
7
Meta-LearningAlgorithms
Avarietyofmeta-learningalgorithmsexist,mostlydifferinginhowtheyarefine-tunedusingthesupportdataduringtheinnerloop:
?MAML:Updatesallnetworkparametersusinggradientdescentduringfine-tuning.
?R2-D2andMetaOptNet:Last-layermeta-learningmethods(onlytrainthelastlayer).Theyfreezethefeatureextractionlayers(featureextractor’sparametersarefrozen)duringtheinnerloop.Onlythelinearclassifierlayeristrainedduringfine-tuning.
?ProtoNet:Last-layermeta-learningmethod.Itclassifiesexamplesbytheproximityoftheirfeaturestothoseofclasscentroids.Theextractedfeaturesareusedtocreateclasscentroidswhichthen
determinethenetwork’sclassboundaries.
8
Few-ShotDatasets
?Mini-ImageNet:ItisaprunedanddownsizedversionoftheImageNetclassificationdataset,
consistingof60,000,84×84RGBcolorimagesfrom100.These100classesaresplitinto64,16,and20classesfortraining,validation,andtestingsets,respectively.
?CIFAR-FSdataset:samplesimagesfromCIFAR-100.CIFAR-FSissplitinthesamewayasmini-ImageNetwith60,00032×32RGBcolorimagesfrom100classesdividedinto64,16,and20
classesfortraining,validation,andtestingsets,respectively.
ComparisonbetweenMeta-LearningandClassicalTrainingModels
?DatasetUsed:1-shotmini-ImageNet
?Classicallytrainedmodelsaretrainedusingcross-entropylossandSGD.
?Commonfine-tuningproceduresareusedforbothmeta-learnedandclassically-trainedmodelsforafaircomparison
?Resultsshowthatmeta-learningmodelsperformbetterthanclassicaltrainingmodelsonfew-shotclassification.
?Thisperformanceadvantageacrosstheboardsuggeststhatmeta-learnedfeaturesarequalitativelydifferentfromconventionalfeaturesandfundamentallysuperiorforfew-shotlearning.
9
10
ClassClusteringinFeatureSpace
MeasuringClusteringinFeatureSpace:
Tomeasurefeatureclustering(FC),weconsidertheintra-classtointer-classvarianceratio:
φi,j-featurevectorcorrespondingtodatapointinclassiintrainingdata
μi-meanoffeaturevectorsinclassi
μ-meanacrossallfeaturevectors
C-numberofclasses
N-numberofdatapointsperclass
Where,fθ(xi,j)=φi,jfθ-featureextractor
xi,j-trainingdatainclassi
Lowvaluesofthisfractioncorrespondtocollectionsoffeaturessuchthatclassesarewell-separatedandahyperplaneformedbychoosingapointfromeachoftwoclassesdoesnotvarydramaticallywiththechoiceofsamples.
WhyClusteringisimportant?
?Asfeaturesinaclassbecomespreadoutandtheclassesarebroughtclosertogether,theclassificationboundariesformedbysamplingone-shotdataoftenmisclassifylargeregions.
?Asfeaturesinaclassarecompactedandclassesmovefarapartfromeachother,theintra-classtointer-classvarianceratiodrops,andthedependenceoftheclassboundaryonthechoiceofone-shotsamplesbecomesweaker.
11
ComparingFeatureRepresentationsofMeta-LearningandClassicallyTrainedModels
?Threeclassesarerandomlychosenfromthetestset,and100samplesaretakenfromeachclass.Thesamplesarethenpassedthroughthefeatureextractor,andtheresultingvectorsareplotted.
?Becausefeaturespaceishigh-dimensional,weperformalinearprojectionontothefirsttwocomponentvectorsdeterminedbyLDA.
?Lineardiscriminantanalysis(LDA)projectsdataontodirectionsthatminimizetheintra-classtointer-classvarianceratio.
?Theclassicallytrainedmodelmashesfeaturestogether,whilethemeta-learnedmodelsdrawtheclassesfartherapart.
12
13
HyperplaneInvariance
Thisregularizerwithonethatpenalizesvariationsinthemaximum-marginhyperplaneseparatingfeaturevectorsin
oppositeclasses
HyperplaneVariationRegularizer:
DatpointsinclassA:x1,x2
DatapointsinclassB:y1,y2
fθ-featureextractor
fθ(x1)-fθ(y1):determinesthedirectionofthemaximum
marginhyperplaneseparatingthetwopointsinthefeaturespace
?Thisfunctionmeasuresthedistancebetweendistancevectorsx1?y1andx2?y2relativetotheirsize.
?Inpractice,duringabatchoftraining,wesamplemanypairsofclassesandtwosamplesfromeachclass.Then,wecomputeRHVonallclasspairsandaddthesetermstothecross-entropyloss.
?WefindthatthisregularizerperformsalmostaswellasFeatureClusteringRegularizerandconclusivelyoutperformsnon-regularizedclassicaltraining.
14
Experiments
?FeatureclusteringandHyperplanevariationvaluesarecomputed.
?Thesetwoquantitiesmeasuretheintra-classtointer-classvarianceratioandinvarianceofseparatinghyperplanes.
?Lowervaluesofeachmeasurementcorrespondtobetterclassseparation.
?OnbothCIFAR-FSandmini-ImageNet,themeta-learnedmodelsattainlowervalues,indicatingthatfeaturespaceclusteringplaysaroleintheeffectivenessofmeta-learning.
15
Experiments
?Weincorporatetheseregularizersintoastandardtrainingroutineoftheclassicaltrainingmodel.
?Inallexperiments,featureclusteringimprovestheperformanceoftransferlearningandsometimesevenachieveshigherperformancethanmeta-learning
16
WeightClustering:FindingClustersofLocalMinimaforTaskLossesinParameterSpace
?SinceReptiledoesnotfixthefeatureextractorduringfine-tuning,itmustfindparametersthatadapteasilytonewtasks.
?WehypothesizethatReptilefindsparametersthatlieveryclosetogoodminimaformanytasksandis,therefore,abletoperformwellonthesetasksafterverylittlefine-tuning.
?ThishypothesisisfurthermotivatedbythecloserelationshipbetweenReptileandconsensusoptimization.
?Inaconsensusmethod,anumberofmodelsareindependentlyoptimizedwiththeirowntask-specificparameters,andthetaskscommunicateviaapenaltythatencouragesalltheindividualsolutionsto
convergearoundacommonvalue.
17
ConsensusFormulation:
?Reptilecanbeinterpretedasapproximatelyminimizingtheconsensusformulation
?Reptiledivergesfromatraditionalconsensusoptimizeronlyinthatitdoesnotexplicitlyconsiderthequadraticpenaltytermwhenminimizingfor?θp.
18
ConsensusOptimizationImprovesReptile
?WemodifyReptiletoexplicitlyenforceparameterclusteringaroundaconsensusvalue.
?Wefindthatdirectlyoptimizingtheconsensusformulationleadstoimprovedperformance.
?duringeachinnerloopupdatestepinReptile,wepenalizethesquareddistancefromtheparametersforthecurrenttasktotheaverageoftheparametersacrossalltasksinthecurrentbatch.
?ThisisequivalenttotheoriginalReptilewhenα=0.Wecallthismethod“Weight-Clustering.
ReptilewithWeightClusteringRegularizer
n-numberofmeta-trainingsteps
k-numberofiterationsorstepstoperformwithineachmeta-trainingstep
19
20
Resultsofweightclustering
?WecomparetheperformanceofourregularizedReptilealgorithmtothatoftheoriginalReptilemethodaswellasfirst-orderMAML(FOMAML)andaclassicallytrainedmodelofthesamearchitecture.We
testthesemethodsonasampleof100,0005-way1-shotand5-shotmini-ImageNettasks
?ReptilewithWeight-Clusteringachieveshigherperformance.
21
Resultsofweightclustering
?ParametersofnetworkstrainedusingourregularizedversionofReptiledonottravelasfarduringfine-tuningatinferenceasthosetrainedusingvanillaReptile
?Fromthese,weconcludethatourregularizerdoesindeedmovemo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年白城職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題含詳細(xì)答案解析
- 2026年青海農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫(kù)及答案詳細(xì)解析
- 2026年江蘇航運(yùn)職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年黑龍江交通職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)含詳細(xì)答案解析
- 代詞詞課件教學(xué)課件
- 2026年貴州交通職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫(kù)及答案詳細(xì)解析
- 2026云南昭通青年企業(yè)家商會(huì)(籌)招聘3人筆試參考題庫(kù)及答案解析
- 2026年白銀礦冶職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年鐵門(mén)關(guān)職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年梧州職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題及答案詳細(xì)解析
- 陜西省西安市工業(yè)大學(xué)附屬中學(xué)2025-2026學(xué)年上學(xué)期八年級(jí)期末數(shù)學(xué)試題(原卷版+解析版)
- 電工素質(zhì)培訓(xùn)課件
- 2026年陜西省森林資源管理局局屬企業(yè)公開(kāi)招聘工作人員備考題庫(kù)及參考答案詳解一套
- 講解員發(fā)聲技巧培訓(xùn)
- TCTA 011-2026 智能水尺觀測(cè)系統(tǒng)操作規(guī)程
- 新入職廉政培訓(xùn)課件
- 律師事務(wù)所年度業(yè)績(jī)考核方案
- 2025年6月江蘇揚(yáng)州經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)區(qū)屬國(guó)有企業(yè)招聘23人筆試參考題庫(kù)附帶答案詳解(3卷)
- 四川省2025年高職單招職業(yè)技能綜合測(cè)試(中職類(lèi)) 護(hù)理類(lèi)試卷(含答案解析)
- 2025至2030全球及中國(guó)變壓器監(jiān)測(cè)行業(yè)調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 三體系基礎(chǔ)培訓(xùn)
評(píng)論
0/150
提交評(píng)論