版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市武珞路中學2024年中考聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列圖標中,是中心對稱圖形的是()A. B.C. D.2.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側,若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°3.下列各式計算正確的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b24.實數(shù)的相反數(shù)是()A. B. C. D.5.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關系是()A. B. C. D.6.下列實數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π7.已知一次函數(shù)y=(k﹣2)x+k不經過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<28.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.199.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)10.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.12.已知是方程組的解,則3a﹣b的算術平方根是_____.13.如圖,點A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.14.在直角坐標系平面內,拋物線y=3x2+2x在對稱軸的左側部分是_____的(填“上升”或“下降”)15.從1,2,3,4,5,6,7,8這八個數(shù)中,任意抽取一個數(shù),這個數(shù)恰好是合數(shù)的概率是__________.16.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調查,要求每名學生只寫一類最喜歡的球類運動,以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比為____________%三、解答題(共8題,共72分)17.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)18.(8分)某蔬菜生產基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關閉后,大棚內的溫度y(℃)與時間x(h)之間的函數(shù)關系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關閉階段.請根據(jù)圖中信息解答下列問題:求這天的溫度y與時間x(0≤x≤24)的函數(shù)關系式;求恒溫系統(tǒng)設定的恒定溫度;若大棚內的溫度低于10℃時,蔬菜會受到傷害.問這天內,恒溫系統(tǒng)最多可以關閉多少小時,才能使蔬菜避免受到傷害?19.(8分)八年級(1)班學生在完成課題學習“體質健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.20.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.(1)隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為;(2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.21.(8分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.22.(10分)如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.24.先化簡,再求值:(),其中=
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、A【解析】
根據(jù)等腰三角形的性質得出∠B=∠CAB,再利用平行線的性質解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質,關鍵是根據(jù)等腰三角形的性質得出∠B=∠CAB.3、C【解析】
根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關鍵.4、D【解析】
根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點睛】本題考查了實數(shù)的性質,在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).5、A【解析】
先求出二次函數(shù)的對稱軸,結合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關鍵是熟悉二次函數(shù)的增減性.6、D【解析】
無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、﹣5是整數(shù),是有理數(shù),選項錯誤;B、是分數(shù),是有理數(shù),選項錯誤;C、0是整數(shù),是有理數(shù),選項錯誤;D、π是無理數(shù),選項正確.故選D.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).7、D【解析】
直線不經過第三象限,則經過第二、四象限或第一、二、四象限,當經過第二、四象限時,函數(shù)為正比例函數(shù),k=0當經過第一、二、四象限時,,解得0<k<2,綜上所述,0≤k<2。故選D8、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.9、C【解析】
當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,
解得:x=0,
故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).10、D【解析】試題分析:連結OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進而證明△AEG為直角三角形,運用相似三角形的性質即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質,翻折變換的性質,以考查全等三角形的性質及其應用、射影定理等幾何知識點為核心構造而成;對綜合的分析問題解決問題的能力提出了一定的要求.12、2.【解析】
靈活運用方程的性質求解即可。【詳解】解:由是方程組的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術平方根是,故答案:【點睛】本題主要考查二元一次方程組的性質及其解法。13、72°.【解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【點睛】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關鍵.14、下降【解析】
根據(jù)拋物線y=3x2+2x圖像性質可得,在對稱軸的左側部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質.根據(jù)拋物線開口方向和對稱軸的位置即可得出結論.15、.【解析】
根據(jù)合數(shù)定義,用合數(shù)的個數(shù)除以數(shù)的總數(shù)即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個數(shù)中,合數(shù)有4、6、8這3個,∴這個數(shù)恰好是合數(shù)的概率是.故答案為:.【點睛】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A);找到合數(shù)的個數(shù)是解題的關鍵.16、1%【解析】
依據(jù)最喜歡羽毛球的學生數(shù)以及占被調查總人數(shù)的百分比,即可得到被調查總人數(shù),進而得出最喜歡籃球的學生數(shù)以及最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比.【詳解】∵被調查學生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比=×100%=1%,
故答案為:1.【點睛】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.三、解答題(共8題,共72分)17、(1);(2)此校車在AB路段超速,理由見解析.【解析】
(1)結合三角函數(shù)的計算公式,列出等式,分別計算AD和BD的長度,計算結果,即可.(2)在第一問的基礎上,結合時間關系,計算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【點睛】考查三角函數(shù)計算公式,考查速度計算方法,關鍵利用正切值計算方法,計算結果,難度中等.18、(1)y關于x的函數(shù)解析式為;(2)恒溫系統(tǒng)設定恒溫為20°C;(3)恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.【解析】分析:(1)應用待定系數(shù)法分段求函數(shù)解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當x=5時,y=20∴B坐標為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關于x的函數(shù)解析式為:(2)由(1)恒溫系統(tǒng)設定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.點睛:本題為實際應用背景的函數(shù)綜合題,考查求得一次函數(shù)、反比例函數(shù)和常函數(shù)關系式.解答時應注意臨界點的應用.19、(1)36,40,1;(2).【解析】
(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權平均數(shù)的概念計算訓練后籃球定時定點投籃人均進球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;
該班共有學生(2+1+7+4+1+1)÷10%=40人;
訓練后籃球定時定點投籃平均每個人的進球數(shù)是=1,
故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.20、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結果總數(shù),摸出標有數(shù)字2的小球有1種可能,因此摸出的球為標有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數(shù),再找出點M落在如圖所示的正方形網格內(包括邊界)的結果數(shù),可求得結果.試題解析:(1)P(摸出的球為標有數(shù)字2的小球)=;(2)列表如下:小華
小麗
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9種等可能的結果數(shù),其中點M落在如圖所示的正方形網格內(包括邊界)的結果數(shù)為6,∴P(點M落在如圖所示的正方形網格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.21、(1)見解析;(2)2.【解析】
(1)四邊形ABCD是平行四邊形,由平行四邊形的性質,可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點睛】此題考查平行四邊形的性質及判斷,考查菱形的判斷及性質,及解直角三角形,解題關鍵在于掌握判定定理和利用三角函數(shù)進行計算.22、(1);(2)95m.【解析】
(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;
(2)過點N作NE⊥AB于點E,易證四邊形MDEN為平行四邊形,所以ME的長可求出,再根據(jù)MN=AB-AD-BE計算即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工質量管理體系手冊
- 企業(yè)內部審計人員培訓手冊(標準版)
- 信息技術服務標準與操作手冊(標準版)
- 工廠員工培訓制度
- 干部教育培訓重要制度
- 2026年酒店前廳經理面試題及管理技巧參考
- 房地產公司現(xiàn)行培訓制度
- 幼兒崗前培訓制度
- 各部門崗位培訓制度
- 安全培訓學員反饋制度
- cobas-h-232心肌標志物床邊檢測儀操作培訓
- 第六講通量觀測方法與原理
- 林規(guī)發(fā)防護林造林工程投資估算指標
- GB/T 23821-2022機械安全防止上下肢觸及危險區(qū)的安全距離
- GB/T 5563-2013橡膠和塑料軟管及軟管組合件靜液壓試驗方法
- GB/T 16895.6-2014低壓電氣裝置第5-52部分:電氣設備的選擇和安裝布線系統(tǒng)
- GB/T 11018.1-2008絲包銅繞組線第1部分:絲包單線
- GA/T 765-2020人血紅蛋白檢測金標試劑條法
- 武漢市空調工程畢業(yè)設計說明書正文
- 麻風病防治知識課件整理
- 安全安全應急救援預案(溝槽開挖)
評論
0/150
提交評論