高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)_第1頁(yè)
高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)_第2頁(yè)
高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)_第3頁(yè)
高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)_第4頁(yè)
高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)「篇一」I.定義與定義表達(dá)式一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c則稱y為_的二次函數(shù)。二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。II.二次函數(shù)的三種表達(dá)式一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)頂點(diǎn)式:y=a(_-h)^2+k[拋物線的頂點(diǎn)P(h,k)]交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_,0)和B(_,0)的拋物線]注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4a_,_?=(-b±√b^2-4ac)/2aIII.二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=_^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。IV.拋物線的性質(zhì)1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線_=-b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線_=0)2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在_軸上。3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c)6.拋物線與_軸交點(diǎn)個(gè)數(shù)Δ=b^2-4ac>0時(shí),拋物線與_軸有2個(gè)交點(diǎn)。Δ=b^2-4ac=0時(shí),拋物線與_軸有1個(gè)交點(diǎn)。Δ=b^2-4ac<0時(shí),拋物線與_軸沒有交點(diǎn)。_的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)V.二次函數(shù)與一元二次方程特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c。當(dāng)y=0時(shí),二次函數(shù)為關(guān)于_的一元二次方程(以下稱方程),即a_^2+b_+c=0此時(shí),函數(shù)圖像與_軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與_軸交點(diǎn)的橫坐標(biāo)即為方程的根。高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)「篇二」(一)、映射、函數(shù)、反函數(shù)1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射。2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;(2)由y=f(x)的解析式求出x=f—1(y);(3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。注意:①對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。②熟悉的應(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡(jiǎn)化運(yùn)算。(二)、函數(shù)的解析式與定義域1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:(1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:①分式的分母不得為零;②偶次方根的被開方數(shù)不小于零;③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集)。(3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可。已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。2、求函數(shù)的解析式一般有四種情況(1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式。(2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。(4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。(三)、函數(shù)的值域與最值1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最?。ù螅┲怠R虼饲蠛瘮?shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2。可見定義域?qū)瘮?shù)的值域或最值的影響。3、函數(shù)的最值在實(shí)際問題中的應(yīng)用函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最?。钡戎T多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值。(四)、函數(shù)的奇偶性1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式。高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)「篇三」奇函數(shù)和偶函數(shù)的定義:奇函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。性質(zhì):奇函數(shù)性質(zhì):1、圖象關(guān)于原點(diǎn)對(duì)稱2、滿足f(—x)=—f(x)3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致4、如果奇函數(shù)在x=0上有定義,那么有f(0)=05、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)偶函數(shù)性質(zhì):1、圖象關(guān)于y軸對(duì)稱2、滿足f(—x)=f(x)3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反4、如果一個(gè)函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=05、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)常用運(yùn)算方法:奇函數(shù)±奇函數(shù)=奇函數(shù);偶函數(shù)±偶函數(shù)=偶函數(shù);奇函數(shù)×奇函數(shù)=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論