版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河南省周口市鄲城一高招生統(tǒng)一考試模擬(一)數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.2.點為棱長是2的正方體的內(nèi)切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.3.設(shè)集合,,則()A. B.C. D.4.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.5.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-7.若,,,則()A. B.C. D.8.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.9.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.10.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.11.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.12.若復數(shù)滿足,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.14.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為____________.15.記等差數(shù)列和的前項和分別為和,若,則______.16.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.18.(12分)已知函數(shù).(1)若在處導數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.19.(12分)已知,求的最小值.20.(12分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關(guān)系.附:21.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.22.(10分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè)出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點法;④參數(shù)法;⑤待定系數(shù)法2、C【解析】
設(shè)的中點為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設(shè)的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學運算能力.3、A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎(chǔ)題.4、B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.5、C【解析】
根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎(chǔ)題.6、C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.7、C【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與和的大小關(guān)系,進而可得出、、三個數(shù)的大小關(guān)系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.9、D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.10、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.11、B【解析】
求出導函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.12、D【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.14、【解析】
根據(jù)漸近線得到,,計算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點睛】本題考查了雙曲線的漸近線和離心率,意在考查學生的計算能力.15、【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學生的計算求解能力,屬于基礎(chǔ)題.16、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元
則根據(jù)題意可得目標函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當直線經(jīng)過時,目標函數(shù)的截距最大,此時最大,
由可得,即此時最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識進行求解是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數(shù)倍.【點睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進行推理說明,對于學生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.18、(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導數(shù)的運算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.19、【解析】
討論和的情況,然后再分對稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當時,,它在上是減函數(shù)故函數(shù)的最小值為當時,函數(shù)的圖象思維對稱軸方程為當時,,函數(shù)的最小值為當時,,函數(shù)的最小值為當時,,函數(shù)的最小值為綜上,【點睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題。20、(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關(guān)系【解析】
(1)利用等高條形圖中兩個深顏色條的高比較得出性別與霧霾天外出戴口罩有關(guān)系;(2)填寫列聯(lián)表即可;(3)由表中數(shù)據(jù),計算觀測值,對照臨界值得出結(jié)論.【詳解】解:(1)在等高條形圖中,兩個深色條的高分別表示女性和男性中霧霾天外出戴口罩的頻率,比較圖中兩個深色條的高可以發(fā)現(xiàn),女性中霧霾天外出帶口罩的頻率明顯高于男性中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學環(huán)境保護與檢測(環(huán)境監(jiān)測質(zhì)量控制)試題及答案
- 2026年農(nóng)機操作(拖拉機駕駛技術(shù))試題及答案
- 2025年大學報警設(shè)備安裝(報警設(shè)備安裝)試題及答案
- AI教學:開啟智慧教育
- 2026中國安能建設(shè)集團有限公司校園招聘備考題庫及答案詳解(奪冠系列)
- 四川省綿陽市安州區(qū)2025-2026學年八年級上學期1月期末數(shù)學試題(含答案)
- 2025國家電投集團中國電能選聘6人備考題庫及答案詳解參考
- 光OFDM技術(shù)教學課件
- 2026河南漯河市源匯區(qū)農(nóng)信聯(lián)社寒假實習生招募15人備考題庫及參考答案詳解一套
- 2025中煤智慧科技(張家口)有限公司面向社會招聘2人備考題庫及答案詳解(奪冠系列)
- 2025年江蘇省公務(wù)員面試模擬題及答案
- 2024-2025學年山東省濟南市槐蔭區(qū)七年級(上)期末地理試卷
- 2025中國家庭品牌消費趨勢報告-OTC藥品篇-
- 機器人學:機構(gòu)、運動學及動力學 課件全套 第1-8章 緒論-機器人綜合設(shè)計
- JJG 694-2025原子吸收分光光度計檢定規(guī)程
- 廣東省2025屆湛江市高三下學期第一次模擬考試-政治試題(含答案)
- 2025年3月29日全國事業(yè)單位事業(yè)編聯(lián)考A類《職測》真題及答案
- 梯子使用安全操作規(guī)程
- 民航保健與衛(wèi)生
- 醫(yī)藥ka專員培訓課件
- 【中考真題】2025年上海英語試卷(含聽力mp3)
評論
0/150
提交評論