版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter8
FrequencyResponseMethodCurriculumSystemSystemmodelingPerformanceissuesanalysiscorrectionTimedomainComplexdomainFrequencydomain8.1IntroductionLinearconstantcoefficientsystemsInputsignal:sinusoidal(frequency,magnitude,andphase)Keyconcepts:(8.1)FrequencyresponseFrequencycharacteristicRepresentationoffrequencycharacteristic(howtogetthem?)Polarplot(8.2)Bodeplot(8.2,8.3)Logmagnitudeandphasediagram(8.6)ApplicationsDeterminethesteady-stateresponsetoasinusoidalinput(8.1)Determinethetransferfunctionbyexperiment(8.4)Analyzeperformancespecificationinthefrequencydomain(8.5)Stabilityanalysis(chapter9)andDesign(chapter10)
Featuresoffrequencydomainanalysismethod⑴Thismethodstudieshowthemagnitudeandphaseofsinusoidalsteady-statevarywiththefrequency⑵Studiesthe
stabilityandperformanceoftheclosed-loopsystembytheopen-loopfrequencycharacteristics⑶Agraphicanalysismethod
⑷Anapproximatemethod8.1Introduction48.1IntroductionThefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.
Theresultingoutputsignalforalinearsystem,aswellassignalsthroughoutthesystem,issinusoidalwiththesamefrequencyasinputsinusoidalinthesteadystate;
Itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle,andtheamountofdifferenceisafunctionoftheinputfrequency.Thesteady-stateoutputsignaldependsonlyonthemagnitudeandphaseofT(jω)ataspecificfrequency
ωs.
Y(s)=T(s)R(s)withr(t)=Asinωt.whereareassumedtobedistinctpoles.Theninpartialfractionformwehavewhereaandβ
areconstantswhichareproblemdependent.TakingtheinverseLaplacetransformyieldsDemonstrationexampleStaticoutputofthesystem
Parametersband
canbeobtainedby7
T(jω)canberepresentedby
8Oneadvantageofthefrequencyresponsemethodisthatexperimentaldeterminationofthefrequencyresponseofasystemiseasilyaccomplishedandisthemostreliableanduncomplicatedmethodfortheexperimentalanalysisofasystem.Furthermore,thedesignofasysteminthefrequencydomainprovidesthedesignerwithcontrolofthebandwidthofasystem,aswellassomemeasureoftheresponseofthesystemtoundesirednoiseanddisturbances.Asecondadvantageisthatthetransferfunctiondescribingthesinusoidalsteady-statebehaviorofasystemcanbeobtainedbyreplacingswithjωinthesystemtransferfunctionT(s)(calledasfrequencycharacteristic).Thebasicdisadvantageofthefrequencyresponsemethodforanalysisanddesignistheindirectlinkbetweenthefrequencyandthetimedomain.
ConceptofFrequency-ResponseCharacteristics
ConsidertheRCcircuitshowninthefigure(ur(t)=Asinwt).Obtainuc(t).Modeling10
DefinitionofFrequency-ResponseCharacteristicDefinition1Definition3Definition2Magnitude-FrequencyCharacteristic
Phase-Frequency
Characteristic
ConceptofFrequency-ResponseCharacteristics
11
Considerthesystemshowninthefigure(r(t)=3sin(2t+30o)).Obtaincs(t),es(t).Solution.ConceptofFrequency-ResponseCharacteristics
12
Frequency-ResponseCharacteristicsinGraphicalFormsⅠ.Frequencycharacteristic
Ⅱ.Magnitudeandphasecharacteristic
(Nyquist)Ⅲ.Log-magnitude-frequencycharacteristic
(Bode)Ⅳ.Log-phase-frequencycharacteristic
(Nichols)Magnitude-FrequencyPhase-FrequencyLog-magnitude-frequencyLog-phase-frequencyForConceptofFrequency-ResponseCharacteristics
13
CorrelationbetweenMathematicalmodelsConceptofFrequency-ResponseCharacteristics
14
Themagnitude-phasecurveforFirst-OrderfactorsMagnitude-PhaseFrequencyCharacteristics15
Magnitude-phasecharacteristicsoftypicalfactorsProve:Theamplitude-phasecharacteristicsoffirst-orderfactorsareasemicircle.
(Lowerhalfofthecircle)Magnitude-PhaseFrequencyCharacteristics16
Magnitude-phasecharacteristicsFromtheshapeofthecurve,weknowthatFromthestartingpoint:Fromj0From
j1:Obtainthetransferfunctionfromthemagnitude-phasecharacteristicsshowninthefigure.Magnitude-PhaseFrequencyCharacteristics17
UnstableFirst-OrderFactors⑸ReciprocalFirst-OrderFactorsMagnitude-PhaseFrequencyCharacteristics18Example8.2PolarplotoftransferfunctionThefrequencycharacteristicisThemagnitudeandphaseangleare8.2FrequencyResponsePlotsUsetherealandimaginarypartsofG(jω)as8.2FrequencyResponsePlots
§Magnitude-PhaseFrequencyCharacteristics(Nyquist)§Magnitude-PhaseFrequencyCharacteristicsofTypicalFactors⑴Thegain⑵Derivativefactor⑶Integralfactor⑷First-orderfactor21AmplitudeandPhaseFrequency⑹OscillationlinkAmplitudeandPhaseFrequencyCharacteristicsofTypicalLink22AmplitudeandPhaseFrequencyCharacteristicsResonance
frequency
wrandresonantpeaking
Mr
Example4:When23AmplitudeandPhaseFrequencyCharacteristicsResonancefrequencyResonantpeakingwr,Mr
不存在24AmplitudeandPhaseFrequencyCharacteristics
AmplitudeandphasecharacteristicsTheamplitudeandphasecharacteristicsisshowninfigure.Determinethetransferfunction.Fromtheshapeofcurve,wehaveFromstartingpoint:Fromj(w0):From|G(w0)|:25AmplitudeandPhaseFrequencyCharacteristics
UnstableOscillationlink26
⑺ReciprocalQuadraticFactor
Magnitude-PhaseFrequencyCharacteristics27
⑻DelayFactorMagnitude-PhaseFrequencyCharacteristics28
NyquistPlotsofTypicalFactors⑴⑵⑶⑻⑸⑷⑹⑺Magnitude-PhaseFrequencyCharacteristics29
NyquistPlotofOpen-LoopTransferFunctionsNyquistPlotofOpen-loopTransferFunctionsStartingpoint
Endingpoint
30
NyquistPlotofOpen-LoopTransferFunctions31
A:
B:NyquistPlotofOpen-LoopTransferFunctions
32
SketchtheNyquistplotforSolution.Asymptotes:Intersectionpointwithrealaxis:
NyquistPlotofOpen-LoopTransferFunctions
33Example8.4Bodediagramofatwin-TnetworkThedeterminationofthefrequencyresponseusingthepole-zerodiagramandvectorstojωThetransferfunctionofthenetworkis8.2FrequencyResponsePlots34Ifthezerosareat±j1,andthepolesareatAtω=0Atω=1/τ
When8.2FrequencyResponsePlots358.2FrequencyResponsePlotsThelimitationsofpolarplotsTheadditionofpolesorzerostoanexistingsystemrequirestherecalculationofthefrequencyresponseFurthermore,calculatingthefrequencyresponseinthismanneristediousanddoesnotindicatetheeffectoftheindividualpolesorzeros.BodeDiagramsSemilogCoordinate37
BodeDiagrams
⑴Magitudemultiplication=Logarithmaddition
Convenientforsegmentaddition;LongitudinalaxisAbscissaAxisFeaturesofthecoordinateFeaturesScaledby
lgw,dec“Decade”按lgw
刻度,dec“十倍頻程”Markedbyw.Distancereflectingratio按w標定,等距等比“Decibel”
⑵Representsfrequencycharacteristicinlargescale;⑶L(w)canbedeterminedbyexperiment,socanG(s).AnintroductionforBodediagrams(LogarithmicPlots)38Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactors,suchas(jωτ+1),intoadditivefactors,20log(jωτ+1)byvirtueofthedefinitionoflogarithmicgain.ThegeneraltransferfunctionisGeneralcase39ThelogarithmicmagnitudeofG(jω)isThephaseangleplotis401.ConstantgainKb2.Poles(orzeros)attheorigin(jω)3.Poles(orzeros)attherealaxis(jωτ+1)4.Complexconjugatepoles(orzeros)Notes:WecandeterminethelogarithmicmagnitudeplotandphaseangleforthesefourfactorsandthenutilizethemtoobtainaBodediagramforanygeneralformofatransferfunctionTypicalfactors418.2FrequencyResponsePlotsThecurvesforeachfactorareobtainedandthenaddedtogethergraphicallytoobtainthecurvesforthecompletetransferfunction.Furthermorethisprocedurecanbesimplifiedbyusingtheasymptoticapproximationstothesecurvesandobtainingtheactualcurvesonlyatspecificimportantfrequencies.42ConstantGainKbThelogarithmicgainfortheconstantKbis8.2TheBodediagramoftypicalfactorsThegaincurveisahorizontallineontheBodediagram.Ifthegainisanegativevalue,-Kb,thelogarithmicgainremains20logKb.Thenegativesignisaccountedforbythephaseangle,-180°.Poles(orzeros)attheorigin(jω)LogarithmicmagnitudePhaseangledB8.2TheBodediagramoftypicalfactorsPolesorZerosontheRealAxisLogarithmicmagnitudeTheasymptoticcurveforω<<1/τis20log1=0dB,andtheasymptoticcurveforω>>1/τis–20logωτ,whichhasaslopeof–20dB/decade.Theintersectionofthetwoasymptotesoccurswhenω=1/τ,thebreakfrequency.Theactuallogarithmicgainis–3dBwhenω=1/τThephaseangleis8.2TheBodediagramoftypicalfactorsThephaseanglecurve8.2TheBodediagramoftypicalfactors46
TheLogarithmicplotoffirst-orderfactorsissymmetricaboutthe
(w=1/T,j=-45
)point.Prove:Suppose47ComplexConjugatePolesorZerosThelogarithmicmagnitudeforapairofcomplexconjugatepolesisThephaseangleisWhenu<<1,themagnitudeis
andphaseangleis00
Whenu>>1,themagnitudeis
andphaseangleis-1800
8.2TheBodediagramoftypicalfactors8.2FrequencyResponsePlots8.2FrequencyResponsePlotsThemaximumvalueofthefrequencyresponse,MPω,occursattheresonantfrequencyωr
Theresonantfrequencyisandthemaximumvalueofthemagnitude|G(ω)|is8.2FrequencyResponsePlots
BodeDiagramsReview
TheBodediagramoftypicalfactors⑴TheGain⑵DerivertiveFactor⑶IntegralFactor⑷First-OrderFactor52
⑸ReciprocalFirst-OderFactorBodeDiagramsReview53
⑹QuadraticFactorsBodeDiagramsReview54
BodeDiagramsReview⑺ReceprocalQuadraticFactors55
⑻DelayLinkBodeDiagramsReview568.3AnexampleofdrawingtheBodediagramTheBodediagramofatransferfunctionG(s)ThefactorshaveAconstantgainK=5ApoleattheoriginApoleatω=2Azeroatω=10Apairofcomplexpolesatω=ωn=5057588.3AnexampleofdrawingtheBodediagram5960618.3AnexampleofdrawingtheBodediagram62Insummary,onemayobtainapproximatecurvesforthemagnitudeandphaseshiftofatransferfunctionG(jω)inordertodeterminetheimportantfrequencyranges.Withintherelativelysmallimportantfrequencyranges,theexactmagnitudeandphaseshiftcanbereadilyevaluatebyusingtheexactequations.TheexactG(jω)canbeplottedbyMatlab
63BodeDiagramForOpen-loopSystemsThestepstosketchBodediagramforopen-loopsystem⑴Changingopen-loop
transferfunction
G(jw)
intotheendofastandardform⑵Listingtheturningfrequencyinturn.⑶確定基準線0.2Inertiallink0.5First-ordercompositedifferential
1OscillationLink基準點斜率⑷DrawingthediagramFirst-orderInertiallink-20dB/decCompositedifferential+20dB/decSecond-orderOscillationLink-40dB/decCompositedifferential-40dB/decw=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-40第一轉(zhuǎn)折頻率之左的特性及其延長線64BodeDiagramForOpen-loopSystems⑸Correction⑹Check①Whentheturningfrequencyoftwoinertiallinksareclosetoeachother②Whenoscillation
x(0.38,0.8)
①TherightmostslopeofL(w)isequalto
-20(n-m)dB/dec
②Thenumberofturningpoint=(Inertial)+(First-ordercompositedifferential)+(Oscillation)+(Second-ordercompositedifferential)③j(w)
-90°(n-m)基準點斜率w=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-4065
BodeDiagramForOpen-loopSystemsBasepoint
.SketchBodediagramSolution.①Standardform②Turningfrequencies③Baseline④Plotting
Slope
⑤
CheckTherightmostslopeofL(w)is-20(n-m)=0Thenumberofturningpoints=3j(w)tendsto
-90o(n-m)=0o
66
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandtheNyquistPlot.
Solution.①BaselinePointSlope②③④Check
TherightmostslopeofL(w)is-20(n-m)=-80dB/decThenumberofturningpoints=3j(w)
-90o(n-m)=-360o67
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandthe
NyquistPlot.
68
ObtainthetransferfunctionfromtheBodediagram.Solution.Fromtheplot
CorrespondingrelationbetweentheBodediagramandNyquistPlot:Turningfrequency
CutoffFrequency
wc:69
Solution.Fromthediagram:ObtainthetransferfunctionfromtheBodediagram.70
CorrespondingrelationbetweentheBodediagramandNyquistPlot:
CutoffFrequency
wc:71
BodeDiagramForOpen-loopSystemsObtainG(s)fromtheBodediagram.Solution.SolutionⅡSolutionⅠSolutionⅢProof:72
BodeDiagramForOpen-loopSystemsObtainG(s)andsketch
j(w)andtheNyquistplotforgivenL(w)ofaminimumphasesystem.Solution⑴III⑵Sketching
j(w)⑶73
BodeDiagramForOpen-loopSystems⑴⑵⑶⑷748.5PerformanceSpecificationintheFrequencyDomainDiscusstherelationshipbetweentheexpectedtransientresponseandthefrequencyresponseofthesystemForasimplesecond-ordersystem,wehavealreadyresulttothisproblem.Thetransferfunctionofsecond-orderclosed-loopsystemisThefrequencyresponseofthesystemisThesecond-ordersystem,thedampingrationofthesystemisrelatedtothemaximummagnitudeMpω
,thefrequencyωr-resonantfrequencyThebandwidth,ωB,isameasureofasystem’sabilitytofaithfullyreproduceaninputsignal8.5PerformanceSpecificationintheFrequencyDomain8.6LogMagnitudeandPhaseDiagramThereareseveralalternativemethodsofpresentingthefrequencyresponseofafunctionGH(jω).(1).Thepolarplot(2).TheBodediagramNowweintroduceanalternativeapproachtoportrayingthefrequencyresponsegraphically(3).Log-magnitude-phasediagram:thelogarithmicmagnitudeindBversusthephaseangleforarangeoffrequencies.Forexample,atransferfunctionisForexample,atransferfunctionis8.7DesignExample:EngravingMachineControlSystemTheengravingmachineTherearetwomotorsinthex-axisAseparatemotorisusedforbothy-axisandz-axisTheblockdiagrammodelforthex-axispositioncontrolsystemisThegoalistoselectanappropriategainK,utilizingfrequencyresponsemethods,sothatthetimeresponsetostepcommandsisacceptable8.7DesignExample:EngravingMachineControlSystemFirst,obtaintheopen-loopandclosed-loopBodediagramTheopen-looptransferfunction(frequencydomain)Wearbitrarilyselectk=2Thenopen-looptransferfunction8.7DesignExample:EngravingMachineControlSystemTheclosed-looptransferfunctionWeassumethatthesystemhasdominantsecond-orderroots,thesystemmaybesecond-orderformFromtheBodediagram,weget8.7DesignExample:EngravingMachineControlSystemWeareapproximatingT(s)asasecond-ordersystem,thenwehaveForseco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城中村新型農(nóng)村合作社方案
- 舊房翻新后評價反饋方案
- 新型保溫材料研發(fā)與應(yīng)用方案
- 降噪隔音材料應(yīng)用方案
- 風力發(fā)電基礎(chǔ)設(shè)施建設(shè)方案
- 道路施工環(huán)保監(jiān)測實施方案
- 2026年酒店管理師酒店運營方向?qū)I(yè)能力筆試預(yù)測模擬卷
- 2026年法語水平測試閱讀理解與寫作題集
- 2026年經(jīng)濟數(shù)據(jù)解讀與分析能力測試題
- 2026年網(wǎng)絡(luò)安全工程師網(wǎng)絡(luò)安全防御方向模擬測試題
- 《看圖找關(guān)系》(教學設(shè)計)-2024-2025學年六年級上冊數(shù)學北師大版
- 新版高中物理必做實驗?zāi)夸浖捌鞑?(電子版)
- 心理與教育測量課件
- ABAQUS在隧道及地下工程中的應(yīng)用
- 【郎朗:千里之行我的故事】-朗朗千里之行在線閱讀
- 相似件管理規(guī)定
- 長沙市財政評審中心 2023年第一期材料價格手冊簽章版
- 病原生物與免疫學試題(含答案)
- 尼帕病毒專題知識宣講
- 現(xiàn)代企業(yè)管理制度
- GB/T 24312-2022水泥刨花板
評論
0/150
提交評論