版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BISWorkingPapersNo1260
Supplychaintransmissionofclimate-relatedphysicalrisks
byDouglasK.G.Araujo,FernandoLinardiandLuisVissotto
MonetaryandEconomicDepartment
April2025
JELclassification:E32,L14,Q54,R15
Keywords:climate-relatedphysicalrisks,precipitationanomalies,supplychains,GDPgrowth
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.
ThispublicationisavailableontheBISwebsite
()
.
?BankforInternationalSettlements2025.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)
ISSN1682-7678(online)
1
Supplychaintransmissionofclimate-relatedphysicalrisks?
DouglasK.G.Araujo1,FernandoLinardi2,LuisVissotto3
1BankforInternationalSettlements,douglas.araujo@
2BancoCentraldoBrasil,fernando.linardi@.br
3BancoCentraldoBrasil,luis.vissotto@.br
Abstract
HowdoclimateanomaliesaffectGDPgrowth,andhowdotradeconnectionshelpunder-standthisimpact?WeaddressthesequestionsexploringlocalfluctuationsintemperatureandprecipitationcoupledwithdataonsupplychainlinkagesbetweenmunicipalitiesinBrazil.GDPgrowthfallswithlocalanomalousdryspellsandtoalowerextent,alsowetspells.Muchofthiseffectisattributabletomoderatelevelsofclimateanomaly.Thisimpactissu?icientlymaterialtotransmitacrosssupplychainconnectionstoothermunicipalities.Focusingonpairsofdistantmunicipalitiestoavoidcommonclimateshocks,municipalitieswhosecustomerfirmssufferdryspellshavebetween1and2percentagepoints(p.p.)lowerGDPgrowth.Thissupplychainshockalsoleadstolowerimportgrowthandweakerlabourmarketmetrics,suggestinganoveralllowerlevelofeconomicactivity.Wealsoexaminethemajoreconomicsectorsseparatelyandfindthatagriculturalactivityismoresensitivetosupplychaintransmissionofphysicalshocks,includingmoderateones,thanmanufacturing(whichrespondsmainlytointensesup-plychainshocks)orservices.Thissuggeststhatthelocaleconomicmixcanbeapotentiallyimportantdriverofeffectheterogeneity.Usingacounterfactualanalysis,weestimatealsothatsupplychainspilloversfromclimatechangevariessubstantiallyovertheyearsbutcanleadto1p.p.lowergrowthonaverage.Keywords:Climate-relatedphysicalrisks.Precipitation
anomalies.Supplychains.GDPgrowth.JELCodes:E32,L14,Q54,R15.
1Introduction
Themacroeconomicimpactsofphysicalshocksandtheiramplificationmechanismscontinuetobeanimportantknowledgegap(Battiston,Dafermos,andMonasterolo(2021)).Thisworkdoc-umentstheimportanceofsupplychainstopaintamorecompletepictureofphysicalrisksfromclimatechange.OuranalysesconcentrateonthetransmissionofphysicalshockacrossBrazilian
*ThisworkrepresentstheviewsoftheauthorsanddoesnotnecessarilyrepresentthoseoftheBankforInter-nationalSettlementsortheBancoCentraldoBrasil.TheauthorsthankRodrigoBarradasandAlejandroParadafortheresearchassistance,TammaCarletonforthemanyinsightfulcommentsandsuggestions,ThorstenBeck(dis-cussant),MarshallBurke,JuliánCaballero,BenCohen,JonFrost,DenizIgan,EnisseKharroubi,GabrielaNodari,LuizPereira,José-LuisPeydró,KevinTracolandGoetzvanPeter,andparticipantsinthe14thBISCCAResearchNetworkon‘Macro-financialimplicationsofclimatechanceandenvironmentaldegradation’,theIIInternationalConferenceontheClimateMacro-FinanceInterface:‘NewEnvironmentalChallengesforFiscal,Monetary,andMacroprudentialPolicy’(2CMFI)andatseminarsintheBancoCentraldoBrasilandtheBancaD’Italiaformanyhelpfulcommentsthatmadethepaperbetter.
2
municipalitiesdirectlyconnectedtoeachotherbytrade.Usingauniqueadministrativedataset,weexploretheeconomiceffectsoflocalclimateanomaliesofdifferentintensitiesinaggregateandacrosssectors.Next,westudyhowtheseeconomicimpactsspreadthroughsupplychainsbeyondanylocaleffect.Importantly,ourestimatesbenefitfromBrazil’scontinentalsizetodisentangletheeffectsofsimultaneousshocksoccurringlocallyandinmunicipalitieswheresupplierorcustomerfirmsarelocated.
Ourdataandmethodologyaffordmultipledimensionsofanalyses.Forexample,theclimateanomaliescanrelatetoeitherwetordryspells,andhavedifferentlevelsofintensity.Intermsoflocation,theanomaliesaremeasuredforeachmunicipality,butinouranalysestheycanalsoenterregressionsassuppliersand/orcustomerstoeachother.Further,eachmunicipalitypairisidentifiedasbeinga(geographically)“distant”linkornot,whereitisassumedthatthedistantonesdonotsharethesamephysicalanomaliesbecauseofthedistance.Finally,theeconomicoutcomeofinterestisGDPgrowthateachmunicipality,asawholeordividedintoagriculture,manufacturingorservicessectors.
Usingsimilarmeasurementsofclimateanomaliesasinthescientificliterature,weshowthatadverseclimateanomaliesofbothmoderateandintensemagnitudeinfluencelocaleconomicout-comes.Duetotheirsheerfrequencyandthemagnitudeofthecoe?icients,moderateshocksareresponsibleforthebulkoftheeffects.Theselocalshocksinfactaresorelevantthattheyspilloverviasupplychainlinkagestoimpactotherregions’economicgrowth.Whencustomerfirmsareinmunicipalitiessufferingdrought,thissupplychainlinkleadstoadepressedlocallabourmarketandforeigntradeimportactivity,consistentwithanincreaseinslack.Shocksinbothcustomersandsuppliersalsoleadmunicipalitiestodiversifymorethelocationoftheirsupplychainconnections.Butultimatelytheeffectoflocalandsupplychain-transmittedclimateshocksisheterogeneous,dependingonthedifferentsectoralmixofeconomicactivityofeachmunicipality:inparticular,agricultureisthemostsensitiveeconomicsectortobothlocalandmoderatesupplychain-transmittedshocks;manufacturingontheotherhandismoresensitivetointensesuppliershocksandservicesGDPgrowthis,onaverage,insulatedfromtheseshocks.Thismightbere-latedtohowclimatephysicalshocksnegativelyimpactagriculturalyield,whichinturnalsoservesasinputtoothercropsandtoanimalhusbandry-bothmacroeconomicallyrelevantactivitiesinBrazil.
1
Thisworkexploresinmoredetaildifferenttypesandintensitylevelsofprecipitationanomaliesacrosssectorsandspace.ByfocusingonBraziliandatainsteadofcross-countrydata,ourworkabstractsfromimportantvariationsineconomicstructureandpolicyandthusalargershareofoutcomevariationcomesfromexposuretodifferentlocalorsupplychainclimateshocks.Anotheradvantageisthatitallowsthepossibilitytouseawealthofconsistentdatasetsatthemunicipalitylevel.Brazilisagoodlaboratoryforstudyingtheeconomicimpactofclimateshocks.Itsconti-nentalarea,geographicaldiversity,heterogeneousweatherpatternsaswellasitsvastbiodiversity,resultinvariationsintheexposuretoclimate-relatedevents(P?rtneretal.(2022)).Atthesametime,Brazilisamiddle-incomecountrywithmunicipalitiesindifferentlevelsofsocio-economicdevelopment,allofthemsubjectedtothesamefederallegalandmonetaryframeworkthatallowsforcomparabilitybetweenitsregions.Importantly,asdocumentedinFigure
1
,mostcatastrophes
1Forexample,Ahvoetal.(2023)showhowinterconnectedagriculturalsupplychainscantransmitshocksfromlowercropyieldswithinthesector.
3
inBrazilarerelatedtoclimate,ratherthanfromgeologicaldisasters.
Ourfindingscontributethreemaininsightstotheliterature.First,wedocumenteconomicallyrelevantimpactsofphysicalshocksalsoforclimateanomaliesthatarenotextremeordisastrous.Thiscanraiseawarenessabouttheimportanceofthoseshockstoclimate-relatedphysicalrisks,asopposedtothefocusonextremeeventsonly.Inaddition,moderateshockscanincreasetheex-ternallyvalidityoffindingscomparedtothoseobtainedfromlargedisasters,sincethelattershedlightonimportanteconomicquestionsthatinsomecasesmaybeapplicableonlyinsimilarlyex-tremesituations.Thesecondcontributionisthestrongevidenceonhowsupplychainconnectionstransmitclimateeconomicshocks.Sincetheseeffectsaremeasuredaftercontrollingfortimeandmunicipality,theycanbeinterpretedasoccurringaboveandbeyondeffectsofclimateanomaliesonpricesorotherincentivesthatarenotrelatedtothetradelinkages.Ourthirdcontributionrelatestouncoveringimportantaspectsthatdriveheterogeneityinresponsestolocalandremoteclimateshocks,inthiscasethroughthemixoflocaleconomicactivitybetweentheagricultural,manufacturingandservicessectors.
Supplychainarebutoneformoftransmissionoflocalshockstootherlocalities.Otherlong-recognisedchannelsincludechangesinprices(Hayek(1945),Flori,Pammolli,andSpelta(2021)),commonbankinglinks(PeekandRosengren(1997),FenderandMcGuire(2010),CortésandStrahan(2017),Ivanov,Macchiavelli,andSantos(2022)),tourismflows(AnastasiaArabadzhyanandLeón(2021)),andothers.Andsupplychainsofcoursedonottransmitonlyclimate-relatedshocks:alongliteraturedocumentshowtradelinksspreadothernaturaldisastersandevenadhoctradeevents(Lafrogne-Joussier,Martin,andMejean(2023)).Still,ourfindingsthatsupplychainconnectionstransmiteconomicshocksfromdifferenttypesofclimateanomaliesandinaheterogenousway,evenwhenshocksaremoderate,improvesourunderstandingofthecomplexeconomicconsequencesofclimaterisks.
Therestofthepaperisorganizedasfollows.Section
2
describesthedataandofferssomeback-groundinformationonchangesinaveragetemperatureandprecipitationexperiencedbyBrazilianmunicipalitiesinrecentdecadesandpresentsthenetworkoflinkagesamongfirmslocatedindifferentmunicipalities.Section
3
analysethelocalimpactofclimateanomalies,andSection
4
elaboratesonthoseresultstodocumentthetransmissionofshocksthroughtradelinkages.Sec-tion
5
breaksdowntheeconomicimpactsintodifferentbroadsectors.AcounterfactualexerciseinSection
6
demonstratestherelevanceofthesefindings.ThenSection
7
connectsthedotsandconcludes.
1.1Literature
Alongliteratureexplorestheeconomiceffectsofphysicalrisks;withsomeinsightslearnedalsofromthebroadersetofnaturaldisastersthatincludesgeologicalevents.Somestudiesfocusontheeffectoftemperaturelevelsordeviationsfromlong-termaveragesoneconomicgrowth(Dell,Jones,andOlken(2012);Burke,Hsiang,andMiguel(2015);HenselerandSchumacher(2019);MaximilianKotzetal.(2021);KalkuhlandWenz(2020)).OtherstudiesexaminetheeffectofvariabilityoftemperatureandprecipitationoneconomicgrowthorGDPpercapita(Felixetal.(2018);Damania,Desbureaux,andZaveri(2020);LettaandTol(2019);Kahnetal.(2021);M.Kotz,Levermann,andWenz(2022)).S.Acevedoetal.(2020)documentsarelationshipbetween
4
temperatureshocksandreducedinvestment,depressedlabourproductivity,poorerhumanhealth,andloweragriculturalandindustrialoutput.Deryugina(2017)documentsthefiscaleffectsofhurricanes,andtheinsuranceprovidedbysocialsafetynets.Hornbeck(2012)showstheshort-andlong-runadjustmentsincountiesaffectedbythe1930sAmericanDustBowlenvironmentalcatastrophe.
Inastudyofthe1950sdroughtintheUS,RajanandRamcharan(2023)showthatexantecreditavailabilityhadasizeableimpactonthelong-runeffectsofthedroughtthroughchangingtheabilityofaffectedtownstoadapttothecircumstancesthroughinvestmentandinnovation.Kim,Matthes,andPhan(2022)useasmoothtransitionvectorautoregression(pioneeredbyAuerbachandGorodnichenko(2012))appliedtoUSdata,findingsubstantialeffectsofclimate-relatedphys-icalrisksonindustrialproduction,consumption,unemploymentandinflation.Parker(2018)alsofindsthatclimatedisastersimpactinflation,withamorepronouncedeffectindevelopingcountries.TheworkbyGonzalez,Ornelas,andSilva(2023)illustratethemulti-sectoralimpactofphysicalrisks.Theyshowthatthe2015Marianaenvironmentaldisastercausedaffectedfarmstoreceivebroadlyhalflesspayments(aproxyforrevenue)fromnon-affectedcustomers,andcreditcardandconsumerfinancebalancestofallby8%.
Anotherstrandintheliteratureexamineshoweconomiclossespropagatebeyondlocalshocks.ThisisconsistentwiththeargumentmadebyAcemogluetal.(2012)thatsectoralshocksandtheirsecond-ordereffectcanexplainaggregateoutcomes,andbyElliott,Golub,andLeduc(2022)aboutthepossibilitythatsupplychainscantransmitevenrelativesmallshocks.Acemoglu,Akcigit,andKerr(2016)showhowthepropagationofmacroeconomicshocksthroughinput-outputandgeographicnetworkscanbeapowerfuldriverofmacroeconomicfluctuations.WenzandWillner(2022)overviewapproachestoassessextremeweathereventsalongglobalsupplychains.GiroudandMueller(2019)documenthowlocalshockspropagateacrossUSregionsthroughfirms’internalnetworksofestablishments,whileCravinoandLevchenko(2017)investigatehowmultinationalfirmscontributetothetransmissionofshocksacrosscountries.Additionally,studieshaveexaminedthepropagationofnaturaldisasterssuchasthe2011Japanearthquake(Carvalhoetal.(2020);Boehm,Flaaen,andPandalai-Nayar(2019))andHurricaneSandyintheUS(Kashiwagi,Todo,andMatous(2021)).
Usingfirm-leveldata,thepapersshowhowshockspropagatethroughsupplychainstoareasnotdirectlyhitbydisasters.BarrotandSauvagnat(2016)usenaturaldisastersintheUStodocumentlargeeffectsoncustomerfirmswhentheirsuppliersaredisrupted,inawaythatisconsistentwithspecificityoftheirinputtotheproductionchain.Dasetal.(2022)showthatsupplyanddemandshockspropagateupstreamanddownstreamintheproductionanddistributionnetwork,bothdomesticallyandabroad.Feng,Li,andWang(2023)showthatinternationaltradeconnectionsexplaincross-borderspilloversofclimateshocks.Zappalà(2023)useaglobalsectoralproductiondatatoinvestigatethepropagationofweathershockstoagricultureinamulti-region,multi-sectorproductionnetworkmodel.Hispaperexploreslinkagesacrosssectorsandspace,showingthattheselinkagescontributesignificantlytolossestimatescomparedtoestimatesfromaggregateprojectionsofGDPonclimateshocks.
5
2Data
Wecombinemultiplepublicly-availableclimateandeconomicdataatthemunicipallevelwithconfidentialBancoCentraldoBrasil(BCB)paymentsdata.Theprimaryfeaturesofthesedataaretherichnessofdataatandisaggregatedgeographicallevelinformation,andtheuseofmultiplecomplementarymeasuresofweatheranomaliesthatdonotdependonindividuallyidentifiedlargescaledisasters.Theresearchperiodspansfrom2000(localshocks)or2012(withsupplychaindata)toend-2019,asu?icientlylongperiodthatencompassesdifferenteconomicpoliciesandbusinesscycledynamicsbutavoidstheturbulentCovid-19pandemicperiod.
2.1Climatedata
Similartothescientificliteratureonclimateanomalies,ourmeasureofclimateanomaliescomesfromdivergencesinprecipitationinagivenlocationfromitshistoricaldistribution.Inparticular,weusemunicipality-levelprecipitationandtemperaturereadingssince1961tocalculatetheStan-dardizedPrecipitationEvapotranspirationIndex(SPEI)(Vicente-Serrano,Beguer??a,andLópez-Moreno2010).Thisindicatormeasuresthedivergencebetweenactualandexpectedtemperature-adjustedprecipitationinagivenlocationforagivenwindowoftime.Forexample,theone-yearadjustedprecipitationvaluesofamunicipalityarecomparedtoitshistoricalaverages.TheSPEIvaluesaremeasuredinstandarddeviations(s.d.)ofthehistoricalvaluesforeachlocation,andarethuscomparableacrosslocationsandtime.Positivereadingsindicatewetterclimatesthanthehistoricalaverageforalocation,andconverselynegativereadingspointtooccurrencesofdroughts.Thisindicatoristhebasisforthephysicalshocksinthisstudyduetotheprevalenceofthistypeofprecipitation-relatedclimateanomalyacrossBrazil(Figure
1
).
2
TheSPEImeasuredateachtimewindowreflectsdifferentphysicalimplicationsofclimateanoma-lies.Forexample,one-yearSPEIismoreinformativeabouttheeffectofdroughtonsoilhumidityandrivervolumes,whilefive-yearSPEIlevelsindicatemorestructuralimplications,suchasonundergroundwaterreservelevels.Ourpreferredmeasureofphysicalshockistheone-yearSPEI.Ayear-longdeviationcanbesu?icientlymaterialtooverwhelmshort-termresiliencemeasures(suchasinputstocksinmanufacturingfirms)whilenotlong-termenoughtoreshapehowsupplychainsarestructured.Forexample,abnormallyhighone-yearSPEIscouldindicatecasesofex-cessiverainthatleadstourbanflooding,causingbothlossoflifeandwealth(oftenalsoaffectingpoorerhouseholds’goods)aswellaslogisticobstaclestocommerce.
3
Inaddition,aone-yearshockhorizonmapswellwiththeannualfrequencyofthemunicipalGDPdata.
4
2Otherwidely-usedindicatorsofprecipitationanomalyincludetheStandardizedPrecipitationIndex(SPI),closelyrelatedtotheSPEI,andthePalmerDroughtSeverityIndex(PDSI).TheSPIfollowsasimilarcalculationastheSPEIbutwithoutanyadjustmentfortemperature,whichbiastheanomalyestimationsespeciallyformorearidregions.ThePSDI,ontheotherhand,isafairlycomplexindicatorthatadjustsfortemperaturebutalsosoilcharacteristics.Forthisreason,itismoredirectlyassociatedwiththesoil-leveldamageofdroughts.TheSPEIcanbeinterpretedasabalancebetweenthesimplicityofSPIwiththeusefulnessofthenuancesprovidedbythePDSI(Liuetal.(2024)).
3OneofvariousexamplesfromlocalnewsisaboutthedamagestotruckshaulinggoodstoandfromaS?oPaulowarehouse,at(inPortuguese):
/agronegocios/noticia/2020/02/10/chuva-em-sp-leva
-ceagesp-a-paralisar-atividades.ghtml.
4Throughoutthepaper,themainresultsareestimatedwithSPEI.ButquantitativeanalyseswiththerelatedindicatorStandardizedPrecipitationIndex(SPI)(McKeeetal.(1993),EdwardsandMcKee(1997),Guttman(1999))
6
Figure1:DeclaredenvironmentaldisastersinBrazil
Numberofdeclareddisasters
600
400
200
0
Jan2005Jan2010Jan2015Jan2020
Typeofdisaster
rain
cyclones
exhaustiongeologic
wildfiresdrought
extremetemperaturestorm
ThehistoricalweatherdatafortheSPEIaretakenfromthewidely-usedClimaticResearchUnitgriddedTimeSeries(CRUTS)monthlydataset,version4(Harrisetal.(2020)).Thisisaclimatedatasetonagridwitharesolutionof0.5°x0.5°inlatitudeandlongitudethatconsistsofweathervariablessuchasprecipitation,temperature,diurnaltemperaturerange,cloudcover,windspeed,andothers.WeusemonthlyprecipitationandaveragedailymeantemperaturetocalculatetheSPEIatthemunicipalitylevelusingtheSPEIRpackage(Beguer??aetal.2014),withthegammadistributioncalibratedwitharectangularkernel,ieallpastobservationsintheone-yearhorizonhavethesameweight.
AninterestingempiricalfeaturethatBraziloffersforthestudyofphysicalriskscomesfromthewidefluctuationsintemperatureandprecipitationconditionsobservedduringtheresearchperiod.ThisisbestseeninFigure
2
,whichportraysthe12-monthrollingaveragesofthenationalunweighedmeanofmunicipaltemperatureandprecipitationvalues.Temperaturelevelshaveremainedbroadlybelow24°Cupuntil2015,buthavebeenconsistentlyabovethatlevelsince.Andtheprecipitationlevelhasswungwidelytoapeakin2010,thengraduallyfallingtoreachlevelsthatwerenotseeninthetwodecadesbefore.
Ourdefinitionof“physicalshock”isstatistical:thepositiveandnegativeSPEIvaluesofmore
yieldsimilarresults,soarenotreported.Conceptually,boththeSPEIandSPIaredifferentwaysofcalculatingthedeviationsofprecipitationfromthelong-termaverageforthatsamelocationandtimeperiodintheyear,withthesedifferencesstandardisedaccordingtothesamedistribution.ThemaindifferencebetweentheSPEIandSPIisthattheformerrelatesonlytoprecipitation,whilethelatteralsocorrectsforchangesinthetemperatureofagivenlocationtobetterreflectthephenomenonofevapotranspiration,whichisimportantformanyphysicalphenomenasuchaswaterabsorptionbythesoiloritsusebyplants.Thesesetsofresultsarebroadlythesame.
7
Figure2:Average12-monthtemperatureandprecipitationlevelsinBrazil
Temperature(°C)
140
130
120
110
100
25.0
24.5
24.0
23.5
23.0
Jan2000Jan2005Jan2010Jan2015Jan2020
Precipitation(mm/month)
temperature
precipitation
thanones.d.(lessthanminusone)identifythe“anomalous”episodes.PositiveSPEIanomaliesarealsoreferredtoas“wetspells”throughout;conversely,negativeSPEIanomaliesare“dryspells”.Thisdefinitionbenefitsfromanintuitiveunderstandingthatanomaliesareeventstending towardsthetailsofdistributions,andallowsanaturalquantitativecomparisonoftheshocks.Toexplorevariationinintensityoftheanomalies,weconsiderallanomaliesofmorethantwos.d.(or lessthannegativetwos.d.)tobe“intense”,whiletheonesbetweenoneandtwos.d.arecalled“moderate”;thisnotationispresentedmoreformallyintheempiricalsectionsbelow.
Figure
3
showstheevolutionoftheclimateanomaliesidentifiedthisway.Notethevirtualabsenceofintensepositiveshocks.Forthisreason,theempiricalspecificationsbelowdonotincludethisparticulartypeofanomalies.
2.2Supplychaindata
ThesupplychainnetworkisbasedonconfidentialBCBdataonelectronicfundstransfersbetweenfirms’bankaccountsatdifferentbanks.
5
Thispaymentmodalityhasnoupperceilingandsettlesonthesameday,reasonsforwhichitiswidelyusedforinterfirmpayment.Correspondingly,thesepaymentsrepresent42%ofalltransactionvaluesaccordingtoBCBdata,
6
thelargestvalueshareinthepaymentssystemwithinourperiodofanalysis.Notably,thisshareremainedstableevenwiththeadventofthepopularinstantpaymentssystemPix(Duarteetal.2022).
7
This
5Transfersbetweenbankaccountsinthesamebankaresettledinternallyinthebank’ssystems(“booktransfer”)andthereforedonotgothroughtheBCBpaymentssystem.
6Availableat
.br/estatisticas/spbadendos/
.
7Availableat
.br/estabilidadefinanceira/estatisticaspix/
.
8
Figure3:Evolutionofclimateanomalies
Percentofmunicipalities
60
40
20
0
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
DryspellsWetspells
Ofwhich,intensedryspells
Ofwhich,intensewetspells
underscoresitsrelevanceasapaymentmethodforfirms.
Importantlyinourcase,theseelectronicfundtransfershelpdifferentiatetrade-relatedpayments:otherbusiness-to-businesspaymentssuchasexpenditureswithutilitiescompaniesareoftensettledviapaymentstubs,whichuseadifferentpaymentsrailandarenotcapturedinthisdata.Thesamefirm-to-firmpaymentsdatahavebeenusedinotherstudiesasaproxyforthesupplychainnetwork(egMartins,Schiozer,andLinardi(2023),Gonzalez,Ornelas,andSilva(2023))andalsobytheBCBinitsoversightactivities(BancoCentraldoBrasil(2015)).
Otherworksintheliteratureidentifytradelinkageswithinvoices(eg,P.Acevedoetal.(2023))orregulatoryfilingsbypublicly-tradedcompanies(eg,Qiu,Shin,andZhang(2023)).Usingpaymentsdatatoproxyforsupplychains,asdoneinthispaper,hasadvantagesanddisadvantages.Paymentsidentifyexactlyfirmsthatarecustomersandsupplierstoeachother,evenwhenthesetraderelationshipsareinformalandthusarenotdocumentedininvoices.Paymentsalsoexpandtheuniverseoffirmsforwhichthereissupplychaindatabeyondthetypicallylargefirmsthatareinsomecasesrequiredtodisclosepublicinformation.Anotheradvantageisthattheactualamountsare,bydefinition,observed.
8
However,thereareimportantlimitationsinhowmuchthepaymentsdataweusecanidentifysup-plychainrelationships.First,wecannotmeasurethewholesupplychainnetwork:asmentionedabove,thesepaymentsonlyconsiderelectronictransfersbetweenaccountsindifferentbanks,since
8OtherpapersthatusethesamedatasetincludeSilva,Amancio,andTabak(2022),Gonzalez,Ornelas,andSilva(2023),amongothers.Silva,Amancio,andTabak(2022)discussesthedatasetinmoredetail,includingtheevolutionofnetworkcentralitymeasuresoverasimilartimeperiodtothatofouranalysis.
9
intrabanktransfersaresettledinternallybythebankviabooktransfer.Cashorcreditcardpay-mentsarealsonotincluded,althoughtypicallythosewouldrelatetoverysmallfirmsormundanelow-ticketpurchasesinsteadofactualproductioninputs.TransactionssettledoutsideofBrazil,suchasforeigntrade,arealsonotconsidered.Thismeansthatsupplychainidentificationmightbesuboptimal,especiallyinsmallermunicipalitieswhereonlyoneortwobankshaveactivepres-ence(generallythelarge,gov
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年移動互聯(lián)網(wǎng)對房地產(chǎn)營銷的影響
- 2025年策劃活動筆試題目及答案
- 2026山東華宇工學院博士人才招聘考試參考題庫及答案解析
- 2025年汕頭衛(wèi)生事業(yè)單位考試及答案
- 2025年杭州在職教師事業(yè)編考試及答案
- 2025年洛師競選團員筆試及答案
- 2025年事業(yè)編學校后勤考試筆試及答案
- 2026年金屬材料的晶體結(jié)構(gòu)與力學性能關(guān)系
- 2026陜西西北工業(yè)大學飛行器動力潤滑系統(tǒng)研究團隊招聘2人筆試模擬試題及答案解析
- 2026年施工現(xiàn)場職業(yè)病與安全事故案例分析
- 廣東省衡水金卷2025-2026學年高三上學期12月聯(lián)考物理試題(含答案)
- 扁鵲凹凸脈法課件
- 2026年開封大學單招職業(yè)適應(yīng)性測試題庫及完整答案詳解1套
- 北京市2025北京市體育設(shè)施管理中心應(yīng)屆畢業(yè)生招聘2人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)2套試卷
- 建筑施工現(xiàn)場材料采購流程
- DB31∕T 1234-2020 城市森林碳匯計量監(jiān)測技術(shù)規(guī)程
- 園林綠化施工工藝及注意事項
- 2025年高中語文必修上冊《登泰山記》文言文對比閱讀訓練(含答案)
- 2025年金蝶AI蒼穹平臺新一代企業(yè)級AI平臺報告-
- 2026屆山東菏澤一中高三化學第一學期期末達標測試試題含解析
- 2025中國機械工業(yè)集團有限公司(國機集團)社會招聘19人筆試參考題庫附答案
評論
0/150
提交評論