版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省樂陵市花園鎮(zhèn)達標(biāo)名校2025屆初三實驗班第一次質(zhì)檢數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點M.若直線l2與x軸的交點為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<22.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.53.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值24.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間5.2017年,全國參加漢語考試的人數(shù)約為6500000,將6500000用科學(xué)記數(shù)法表示為()A.6.5×105B.6.5×106C.6.5×107D.65×1056.計算±的值為()A.±3 B.±9 C.3 D.97.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°8.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.9.拋物線的頂點坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)10.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人二、填空題(共7小題,每小題3分,滿分21分)11.一個多邊形的內(nèi)角和是,則它是______邊形.12.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.13.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.14.將一副三角板如圖放置,若,則的大小為______.15.如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.16.如圖,已知,第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第四象限內(nèi)的點B在反比例函數(shù)y=的圖象上.且OA⊥OB,∠OAB=60°,則k的值為_________.17.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.三、解答題(共7小題,滿分69分)18.(10分)(1)計算:()﹣3×[﹣()3]﹣4cos30°+;(2)解方程:x(x﹣4)=2x﹣819.(5分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.20.(8分)(1)計算:(2)化簡:21.(10分)先化簡,再求值:(1﹣)÷,其中x=1.22.(10分)如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩€與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).23.(12分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.24.(14分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
解:∵直線l1與x軸的交點為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點在第一象限,∴,解得0<k<1.故選D.兩條直線相交或平行問題;一次函數(shù)圖象上點的坐標(biāo)特征.2、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例3、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.4、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點:估算無理數(shù)的大?。?、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將6500000用科學(xué)記數(shù)法表示為:6.5×106.故答案選B.本題考查了科學(xué)計數(shù)法,解題的關(guān)鍵是熟練的掌握科學(xué)計數(shù)法的表示形式.6、B【解析】
∵(±9)2=81,∴±±9.故選B.7、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質(zhì).8、A【解析】
根據(jù)左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;
B選項幾何體的左視圖為;
C選項幾何體的左視圖為;
D選項幾何體的左視圖為;
故選:A.本題考查由三視圖判斷幾何體,解題的關(guān)鍵是熟練掌握左視圖的概念.9、A【解析】
已知解析式為頂點式,可直接根據(jù)頂點式的坐標(biāo)特點,求頂點坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(2,3).故選A.此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標(biāo)是(h,k),對稱軸是x=h.10、C【解析】
設(shè)參加酒會的人數(shù)為x人,根據(jù)每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:
x(x-1)=55,
化簡得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案為C.考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.二、填空題(共7小題,每小題3分,滿分21分)11、六【解析】試題分析:這個正多邊形的邊數(shù)是n,則(n﹣2)?180°=720°,解得:n=1.則這個正多邊形的邊數(shù)是六,故答案為六.考點:多邊形內(nèi)角與外角.12、250【解析】
從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.13、①②③④⑤⑥⑦.【解析】
將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.14、160°【解析】試題分析:先求出∠COA和∠BOD的度數(shù),代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案為160°.考點:余角和補角.15、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.16、-6【解析】如圖,作AC⊥x軸,BD⊥x軸,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,設(shè)A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把點B代入y=得,-=,解得k=-6,故答案為-6.17、1.【解析】分析:根據(jù)同一時刻物高與影長成比例,列出比例式再代入數(shù)據(jù)計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應(yīng)用,解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立數(shù)學(xué)模型來解決問題.三、解答題(共7小題,滿分69分)18、(1)3;(1)x1=4,x1=1.【解析】
(1)根據(jù)有理數(shù)的混合運算法則計算即可;(1)先移項,再提取公因式求解即可.【詳解】解:(1)原式=8×(﹣)﹣4×+1=8×﹣1+1=3;(1)移項得:x(x﹣4)﹣1(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0,x﹣1=0,x1=4,x1=1.本題考查了有理數(shù)的混合運算與解一元二次方程,解題的關(guān)鍵是熟練的掌握有理數(shù)的混合運算法則與根據(jù)因式分解法解一元二次方程.19、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標(biāo);當(dāng)P點在第三象限時,同理可求得P點坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標(biāo)為(,)或(﹣,).本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.20、(1);(2)-1;【解析】
(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪可以解答本題;(2)根據(jù)分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1本題考查分式的混合運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪,解答本題的關(guān)鍵是明確它們各自的計算方法.21、.【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把x的值代入計算即可求出值.【詳解】原式==當(dāng)x=1時,原式=.本題考查了分式的化簡求值,熟練掌握運算法則是解答本題的關(guān)鍵.22、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.解此題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.23、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三副考試必對題目及答案
- 運輸公司安全制度
- 車輛排土?xí)r,嚴(yán)格執(zhí)行車廂二次舉升制度
- 財務(wù)報賬會審會簽制度
- 試述取得時效制度
- 血透重點環(huán)節(jié)核查制度
- 2025年濟南人事中心考試及答案
- 2025年大渡崗鄉(xiāng)事業(yè)單位考試及答案
- 2025年-北京舞蹈學(xué)院招聘筆試及答案
- 2025年黃州人事考試及答案
- 硫氧鎂頂板施工方案
- 2025初會會計考試真題及答案
- 消防知識培訓(xùn)錦旗課件
- 新媒體與藝術(shù)教育-藝術(shù)教育中的新媒體技術(shù)
- 中醫(yī)醫(yī)院針灸進修總結(jié)
- 主動脈瘤護理查房
- 湖南省2025年中考歷史真題試卷及答案
- 癲癇患者急救護理
- 2025公務(wù)員能源局面試題目及答案
- T/CCIAS 009-2023減鹽醬油
- 云南省曲靖市2024-2025學(xué)年高三年級第二次教學(xué)質(zhì)量監(jiān)測思想政治試卷(含答案)
評論
0/150
提交評論