版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁陜西工商職業(yè)學(xué)院
《機(jī)器學(xué)習(xí)原理》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略2、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略3、考慮一個時間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以4、在一個圖像識別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進(jìn)行優(yōu)化5、在一個深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效6、考慮在一個圖像識別任務(wù)中,需要對不同的物體進(jìn)行分類,例如貓、狗、汽車等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對圖像進(jìn)行模糊處理D.減小圖像的分辨率7、假設(shè)要預(yù)測一個時間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設(shè)檢驗,如t檢驗或方差分析,但對數(shù)據(jù)分布有要求C.變點(diǎn)檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點(diǎn),但可能對噪聲敏感D.深度學(xué)習(xí)中的異常檢測模型,能夠自動學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練8、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動態(tài)調(diào)整9、在構(gòu)建一個機(jī)器學(xué)習(xí)模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行10、在一個強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗,可能會錯過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)11、某研究團(tuán)隊正在開發(fā)一個用于疾病預(yù)測的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以12、在一個分類問題中,如果數(shù)據(jù)集中存在多個類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機(jī)13、在進(jìn)行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率14、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝炞C技術(shù)來評估不同模型和超參數(shù)組合的性能。假設(shè)有一個分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗證,以下關(guān)于K的選擇,哪一項是不太合理的?()A.K=5,平衡計算成本和評估準(zhǔn)確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個樣本都用于驗證一次15、在監(jiān)督學(xué)習(xí)中,常見的算法有線性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說法中,錯誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機(jī)通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)16、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展17、在一個強(qiáng)化學(xué)習(xí)問題中,如果智能體需要與多個對手進(jìn)行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強(qiáng)化學(xué)習(xí)算法C.策略梯度算法D.以上算法都可以18、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計一個CNN模型,對于圖像分類任務(wù),以下哪個因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大19、假設(shè)我們正在訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學(xué)習(xí)率設(shè)置過高D.以上原因都有可能20、在進(jìn)行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對特征進(jìn)行主成分分析C.對特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明機(jī)器學(xué)習(xí)在病理學(xué)中的樣本分析。2、(本題5分)說明機(jī)器學(xué)習(xí)中模型的超參數(shù)調(diào)優(yōu)方法。3、(本題5分)簡述在工業(yè)生產(chǎn)中,質(zhì)量控制中機(jī)器學(xué)習(xí)的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)通過語言學(xué)數(shù)據(jù)構(gòu)建語言模型和研究語言規(guī)律。2、(本題5分)運(yùn)用K-Means聚類對用戶的社交網(wǎng)絡(luò)關(guān)系進(jìn)行分析。3、(本題5分)通過蛋白質(zhì)組學(xué)數(shù)據(jù)研究蛋白質(zhì)的表達(dá)和功能。4、(本題5分)基于教育數(shù)據(jù)為學(xué)生提供個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 苗木代賣協(xié)議書
- 苗木釆購合同范本
- 蔬菜保供協(xié)議書
- 融資意向協(xié)議書
- 認(rèn)養(yǎng)土雞協(xié)議書
- 讓利協(xié)議書范本
- 設(shè)備調(diào)撥協(xié)議書
- 設(shè)計稿協(xié)議合同
- 試劑費(fèi)用協(xié)議書
- 請人守校協(xié)議書
- 四川省達(dá)州市達(dá)川中學(xué)2025-2026學(xué)年八年級上學(xué)期第二次月考數(shù)學(xué)試題(無答案)
- 2025陜西西安市工會系統(tǒng)開招聘工會社會工作者61人歷年題庫帶答案解析
- 江蘇省南京市秦淮區(qū)2024-2025學(xué)年九年級上學(xué)期期末物理試題
- 債轉(zhuǎn)股轉(zhuǎn)讓協(xié)議書
- 外賣平臺2025年商家協(xié)議
- (新教材)2026年人教版八年級下冊數(shù)學(xué) 24.4 數(shù)據(jù)的分組 課件
- 江蘇省第二屆數(shù)據(jù)安全技術(shù)應(yīng)用職業(yè)技能競賽理論考試題庫-上(單選題)
- 四川省內(nèi)江市2023-2024學(xué)年七年級上學(xué)期期末測評英語試題
- DB11∕T 594.1-2017 地下管線非開挖鋪設(shè)工程施工及驗收技術(shù)規(guī)程 第1部分:水平定向鉆施工
- 家園共育背景下幼兒良好生活習(xí)慣與能力的培養(yǎng)研究
- 四川省高等教育自學(xué)考試自考畢業(yè)生登記表001匯編
評論
0/150
提交評論