版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省建湖縣重點達標名校中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:62.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-43.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.4.的相反數(shù)是()A. B.- C. D.5.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.6.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°7.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.88.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<1;③當x<1時,y隨x增大而增大;④拋物線的頂點坐標為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤9.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.10.在體育課上,甲,乙兩名同學(xué)分別進行了5次跳遠測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡的結(jié)果等于__.12.如圖,利用圖形面積的不同表示方法,能夠得到的代數(shù)恒等式是____________________(寫出一個即可).13.如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應(yīng)點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.14.如圖,AB為⊙0的弦,AB=6,點C是⊙0上的一個動點,且∠ACB=45°,若點M、N分別是AB、BC的中點,則MN長的最大值是______________.15.飛機著陸后滑行的距離y(單位:m)關(guān)于滑行時間t(單位:s)的函數(shù)解析式是y=60t﹣.在飛機著陸滑行中,最后4s滑行的距離是_____m.16.使有意義的的取值范圍是__________.三、解答題(共8題,共72分)17.(8分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由18.(8分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).19.(8分)計算:1220.(8分)經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結(jié)果;并計算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉(zhuǎn)的概率.21.(8分)如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角,求樹高AB(結(jié)果保留根號).22.(10分)某蔬菜加工公司先后兩次收購某時令蔬菜200噸,第一批蔬菜價格為2000元/噸,因蔬菜大量上市,第二批收購時價格變?yōu)?00元/噸,這兩批蔬菜共用去16萬元.(1)求兩批次購蔬菜各購進多少噸?(2)公司收購后對蔬菜進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?23.(12分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復(fù)興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?24.觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.2、D【解析】
根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大?。?、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點Q在BC上這種情況.4、C【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.5、C【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關(guān)鍵.6、D【解析】試題分析:設(shè)正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設(shè)正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.7、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.8、B【解析】
由拋物線的對稱軸結(jié)合拋物線與x軸的一個交點坐標,可求出另一交點坐標,結(jié)論①正確;當x=﹣1時,y>1,得到a﹣b+c>1,結(jié)論②錯誤;根據(jù)拋物線的對稱性得到結(jié)論③錯誤;將x=2代入二次函數(shù)解析式中結(jié)合4a+b+c=1,即可求出拋物線的頂點坐標,結(jié)論④正確;根據(jù)拋物線的頂點坐標為(2,b),判斷⑤.【詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),∴拋物線與x軸的另一交點坐標為(1,1),∴拋物線過原點,結(jié)論①正確;②∵當x=﹣1時,y>1,∴a﹣b+c>1,結(jié)論②錯誤;③當x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點坐標為(2,b),結(jié)論④正確;⑤∵拋物線的頂點坐標為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結(jié)論有:①④⑤.故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.9、D【解析】解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.10、D【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越??;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數(shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠成績的方差.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.12、(a+b)2=a2+2ab+b2【解析】
完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應(yīng)的面積是解題的關(guān)鍵.13、或10【解析】
試題分析:根據(jù)題意,可分為E點在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當點E在DC上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設(shè)FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當,所以FQ=點E在DG的延長線上時,點D的對應(yīng)點F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設(shè)DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.14、3【解析】
根據(jù)中位線定理得到MN的最大時,AC最大,當AC最大時是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因為點M、N分別是AB、BC的中點,由三角形的中位線可知:MN=AC,所以當AC最大為直徑時,MN最大.這時∠B=90°又因為∠ACB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點睛】本題考查了三角形的中位線定理、等腰直角三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是了解當什么時候MN的值最大,難度不大.15、24【解析】
先利用二次函數(shù)的性質(zhì)求出飛機滑行20s停止,此時滑行距離為600m,然后再將t=20-4=16代入求得16s時滑行的距離,即可求出最后4s滑行的距離.【詳解】y=60t﹣=(t-20)2+600,即飛機著陸后滑行20s時停止,滑行距離為600m,當t=20-4=16時,y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.【點睛】本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,熟練應(yīng)用二次函數(shù)的性質(zhì)解決問題.16、【解析】
根據(jù)二次根式的被開方數(shù)為非負數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.【點睛】本題主要考查了二次根式的性質(zhì),熟練掌握相關(guān)概念是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1);6;(2)有最小值;(3),.【解析】
(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構(gòu)造直角三角形求出點D的坐標即可求出BD;
(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結(jié)論得證.
(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,
∴=0,∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如圖2,記半圓的圓心為O',連接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,∴D(0,2),
∴BD=2-(-3)=5;(2)如圖3,
∵A(-1,0),C(4,0),
∴AC=5,
過點E作EG∥BC交x軸于G,
∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,
∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,
∵直線BC的解析式為y=x-3,
設(shè)直線EG的解析式為y=x+m①,
∵拋物線的解析式為y=x2-x-3②,
聯(lián)立①②化簡得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直線EG的解析式為y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,
∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,
∴點P只能在拋物線部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
當∠APC=∠CAB時,點P和點B重合,即:P(0,-3),
由拋物線的對稱性知,另一個點P的坐標為(3,-3),
即:使∠APC=∠CAB,點P坐標為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時,兩三角形面積之比最小是解本題的關(guān)鍵.18、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據(jù)在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據(jù)銳角三角函數(shù)和題目中的數(shù)據(jù)可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,∴,設(shè)DE=5x米,則EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)過點D作AB的垂線,垂足為H,設(shè)DH的長為x,由題意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根據(jù)勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大樓AB的高度是34米.19、-1【解析】
先化簡二次根式、計算負整數(shù)指數(shù)冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握二次根式的性質(zhì)、分母有理化、負整數(shù)指數(shù)冪的意義、絕對值的意義是解答本題的關(guān)鍵.20、(1);(2).【解析】
(1)可以采用列表法或樹狀圖求解.可以得到一共有9種情況,從中找到兩輛汽車都不直行的結(jié)果數(shù),根據(jù)概率公式計算可得;(2)根據(jù)樹狀圖得出至少有一輛汽車向左轉(zhuǎn)的結(jié)果數(shù),根據(jù)概率公式可得答案.【詳解】(1)畫“樹形圖”列舉這兩輛汽車行駛方向所有可能的結(jié)果如圖所示:∴這兩輛汽車行駛方向共有9種可能的結(jié)果,其中兩輛汽車都不直行的有4種結(jié)果,所以兩輛汽車都不直行的概率為;(2)由(1)中“樹形圖”知,至少有一輛汽車向左轉(zhuǎn)的結(jié)果有5種,且所有結(jié)果的可能性相等∴P(至少有一輛汽車向左轉(zhuǎn))=.【點睛】此題考查了樹狀圖法求概率.解題的關(guān)鍵是根據(jù)題意畫出樹狀圖,再由概率=所求情況數(shù)與總情況數(shù)之比求解.21、6+【解析】
如下圖,過點C作CF⊥AB于點F,設(shè)AB長為x,則易得AF=x-4,在Rt△ACF中利用∠的正切函數(shù)可由AF把CF表達出來,在Rt△ABE中,利用∠的正切函數(shù)可由AB把BE表達出來,這樣結(jié)合BD=CF,DE=BD-BE即可列出關(guān)于x的方程,解方程求得x的值即可得到AB的長.【詳解】解:如圖,過點C作CF⊥AB,垂足為F,設(shè)AB=x,則AF=x-4,∵在Rt△ACF中,tan∠=,∴CF==BD,同理,Rt△ABE中,BE=,∵BD-BE=DE,∴-=3,解得x=6+.答:樹高AB為(6+)米.【點睛】作出如圖所示的輔助線,利用三角函數(shù)把CF和BE分別用含x的式子表達出來是解答本題的關(guān)鍵.22、(1)第一次購進40噸,第二次購進160噸;(2)為獲得最大利潤,精加工數(shù)量應(yīng)為150噸,最大利潤是1.【解析】
(1)設(shè)第一批購進蒜薹a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年青海師范大學(xué)馬克思主義基本原理概論期末考試題含答案解析(必刷)
- 體檢中心護理健康教育與指導(dǎo)
- 2025年湖南大學(xué)馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 2025年中國農(nóng)業(yè)大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析
- 2024年石阡縣幼兒園教師招教考試備考題庫含答案解析(奪冠)
- 2025年陸良縣幼兒園教師招教考試備考題庫及答案解析(必刷)
- 2024年長春建筑學(xué)院馬克思主義基本原理概論期末考試題及答案解析(奪冠)
- 2025年威寧彝族回族苗族自治縣招教考試備考題庫附答案解析(必刷)
- 2025年深圳開放大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析
- 2025年安徽糧食工程職業(yè)學(xué)院單招職業(yè)技能考試題庫附答案解析
- 廣東省佛山市2024-2025學(xué)年高二上學(xué)期期末考試 語文 含解析
- 中藥材及中藥飲片知識培訓(xùn)
- 2024年臺州三門農(nóng)商銀行招聘筆試真題
- 高一政治必修1、必修2基礎(chǔ)知識必背資料
- 垃圾處理設(shè)備維修合同
- DB4114T 105-2019 黃河故道地區(qū)蘋果化學(xué)疏花疏果技術(shù)規(guī)程
- 如何高效向GPT提問
- JT-T-969-2015路面裂縫貼縫膠
- 無抗養(yǎng)殖模式可行性分析
- 《常見疾病康復(fù)》課程教學(xué)大綱
- 飼料廠HACCP計劃書
評論
0/150
提交評論