湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題含解析_第1頁
湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題含解析_第2頁
湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題含解析_第3頁
湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題含解析_第4頁
湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省隨州市第二高級中學(xué)2025年數(shù)學(xué)高二下期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)f(x)=sin(ωx+πA.關(guān)于直線x=π12對稱 B.關(guān)于直線C.關(guān)于點π12,0對稱 D.2.的二項展開式中,項的系數(shù)是()A. B. C. D.2703.一個幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.4.已知a>0,b>-1,且a+b=1,則的最小值為()A. B. C. D.5.已知函數(shù),則不等式的解集是()A. B. C. D.6.用數(shù)學(xué)歸納法證明過程中,假設(shè)時,不等式成立,則需證當(dāng)時,也成立,則()A. B.C. D.7.在等差數(shù)列{an}中,若a2=4,A.-1 B.0 C.1 D.68.若函數(shù)f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函數(shù)又是增函數(shù),則g(x)=的圖象是()A. B. C. D.9.設(shè)i是虛數(shù)單位,復(fù)數(shù)a+i1+i為純虛數(shù),則實數(shù)a的值為A.-1B.1C.-2D.210.“”是“圓:與圓:外切”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分條件也不必要條件11.已知函數(shù)在區(qū)間上恰有一個最大值點和一個最小值點,則實數(shù)的取值范圍是()A. B. C. D.12.已知一列數(shù)按如下規(guī)律排列:,則第9個數(shù)是()A.-50 B.50 C.42 D.—42二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),且在上有最大值,則最大值為_____.14.若存在兩個正實數(shù),使得不等式成立,其中為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是__________.15.已知,則_________.16.一名同學(xué)想要報考某大學(xué),他必須從該校的7個不同專業(yè)中選出5個,并按第一志愿、第二志愿、…、第五志愿的順序填寫志愿表,若專業(yè)不能作為第一、第二志愿,則他共有____種不同的填法。(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,有一塊半徑為的半圓形空地,開發(fā)商計劃征地建一個矩形游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心,在圓的直徑上,在圓周上.(1)設(shè),征地面積記為,求的表達(dá)式;(2)當(dāng)為何值時,征地面積最大?18.(12分)如圖,在多面體中,四邊形是菱形,⊥平面且.(1)求證:平面⊥平面;(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.19.(12分)某大型高端制造公司為響應(yīng)《中國制造2025》中提出的堅持“創(chuàng)新驅(qū)動、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用x(百萬元)2361021131518產(chǎn)品銷量與(萬臺)1122.563.53.54.5(1)根據(jù)數(shù)據(jù)可知y與x之間存在線性相關(guān)關(guān)系(ⅰ)求出y關(guān)于x的線性回歸方程(系數(shù)精確到0.001);(ⅱ)若2018年6月份研發(fā)投人為25百萬元,根據(jù)所求的線性回歸方程估計當(dāng)月產(chǎn)品的銷量;(2)為慶祝該公司9月份成立30周年,特制定以下獎勵制度:以z(單位:萬臺)表示日銷量,,則每位員工每日獎勵200元;,則每位員工每日獎勵300元;,則每位員工每日獎勵400元現(xiàn)已知該公司9月份日銷量z(萬臺)服從正態(tài)分布,請你計算每位員工當(dāng)月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,.參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.若隨機(jī)變量X服從正態(tài)分布,則,.20.(12分)已知為橢圓的右焦點,點在上,且軸.(1)求的方程(2)過的直線交于兩點,交直線于點.證明:直線的斜率成等差數(shù)列.21.(12分)將編號為1、2、3、4的四個小球隨機(jī)的放入編號為1、2、3、4的四個紙箱中,每個紙箱有且只有一個小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號為的紙箱放入的小球編號為,定義吻合度誤差為(1)寫出吻合度誤差的可能值集合;(2)假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨立);22.(10分)已知函數(shù)的定義域為;(1)求實數(shù)的取值范圍;(2)設(shè)實數(shù)為的最大值,若實數(shù),,滿足,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求出函數(shù)的解析式,然后判斷對稱中心或?qū)ΨQ軸即可.【詳解】函數(shù)f(x)=2sin(ωx+π3)(ω>0)的最小正周期為π2,可得ω函數(shù)f(x)=2sin(4x+π由4x+π3=kπ+π2,可得x=kπ當(dāng)k=0時,函數(shù)的對稱軸為:x=π故選:B.本題考查三角函數(shù)的性質(zhì)的應(yīng)用,周期的求法,考查計算能力,是基礎(chǔ)題2、C【解析】分析:先求出二項式展開式的通項公式,再令的冪指數(shù)等于,且的冪指數(shù)等于,求得的值,即可求得結(jié)果詳解:的展開式中,通項公式為令,且,求得項的系數(shù)是故選點睛:本題主要考查的是二項式定理,先求出其通項公式,即可得到其系數(shù),本題較為簡單。3、C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.4、A【解析】分析:由,且,變形可得利用導(dǎo)數(shù)求其最值;詳解:,且a+b=1,∴.

令,解得,此時函數(shù)單調(diào)遞增;令,解得此時函數(shù)單調(diào)遞減.

∴當(dāng)且僅當(dāng)時,函數(shù)取得極小值即最小值,點睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,屬中檔題.5、C【解析】

先判斷出函數(shù)為奇函數(shù)且在定義域內(nèi)單調(diào)遞增,然后把不等式變形為,再利用單調(diào)性求解即可.【詳解】由題意得,函數(shù)的定義域為R.∵,∴函數(shù)為奇函數(shù).又根據(jù)復(fù)合函數(shù)的單調(diào)性可得,函數(shù)在定義域上單調(diào)遞增.由得,∴,解得,∴不等式的解集為.故選C.解答本題的關(guān)鍵是挖掘題意、由條件得到函數(shù)的奇偶性和單調(diào)性,最后根據(jù)函數(shù)的單調(diào)性求解,這是解答抽象不等式(即不知表達(dá)式的不等式)問題的常用方法,考查理解和應(yīng)用能力,具有一定的難度和靈活性.6、C【解析】故選7、B【解析】在等差數(shù)列an中,若a2=4,a4=2,則8、C【解析】本題考查指數(shù)型函數(shù)的奇偶性,單調(diào)性;對數(shù)函數(shù)的圖像及圖像的平移變換.因為是奇函數(shù),所以恒成立,整理得:恒成立,所以則又函數(shù)在R上是增函數(shù),所以于是函數(shù)的圖像是由函數(shù)性質(zhì)平移1個單位得到.故選C9、A【解析】a+i1+i=(a+i)(1-i)10、B【解析】

由圓:與圓:外切可得,圓心到圓心的距離是求出的值,然后判斷兩個命題之間的關(guān)系?!驹斀狻坑蓤A:與圓:外切可得,圓心到圓心的距離是即可得所以“”是“圓:與圓:外切”的充分不必要條件。本題考查了兩個圓的位置關(guān)系及兩個命題之間的關(guān)系,考查計算能力,轉(zhuǎn)化思想。屬于中檔題。11、B【解析】

首先利用三角函數(shù)關(guān)系式的恒等變換,把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】由題意,函數(shù),令,所以,在區(qū)間上恰有一個最大值點和最小值點,則函數(shù)恰有一個最大值點和一個最小值點在區(qū)間,則,解答,即,故選B.本題主要考查了三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.12、A【解析】分析:根據(jù)規(guī)律從第3個數(shù)起,每一個數(shù)等于前兩個數(shù)之差,確定第9個數(shù).詳解:因為從第3個數(shù)起,每一個數(shù)等于前兩個數(shù)之差,所以第9個數(shù)是,選A.點睛:由前幾項歸納數(shù)列通項的常用方法為:觀察(觀察規(guī)律)、比較(比較已知數(shù)列)、歸納、轉(zhuǎn)化(轉(zhuǎn)化為特殊數(shù)列)、聯(lián)想(聯(lián)想常見的數(shù)列)等方法.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

先對函數(shù)求導(dǎo),求出,再由導(dǎo)數(shù)的方法研究函數(shù)單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】因為,所以,因此,解得,所以,由得或;由得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;所以當(dāng)時,取極大值,由得或;又在上有最大值,所以只需.故答案為3本題主要考查導(dǎo)數(shù)的應(yīng)用,由函數(shù)在給定區(qū)間有最大值求參數(shù),只需利用導(dǎo)數(shù)的方法研究函數(shù)單調(diào)性,即可求解,屬于常考題型.14、【解析】由題意得,令m=(t?2e)lnt,(t>0),則,當(dāng)x>e時,m′>m′(e)=0,當(dāng)0<x<e時,m′<m′(e)=0,∴m?m(e)=?e,∴,解得a<0或.∴實數(shù)a的取值范圍是(?∞,0)∪[,+∞).15、【解析】

根據(jù)二項式定理,,推導(dǎo)出,由,能求出.【詳解】解:,,,由,解.故答案為1.本題考查實數(shù)值的求法,考查組合數(shù)公式等基礎(chǔ)知識,考查推理能力與計算能力,考查函數(shù)與方程思想,是基礎(chǔ)題.16、【解析】根據(jù)題意,分2步進(jìn)行分析:①、由于A專業(yè)不能作為第一、第二志愿,需要在除A之外的6個專業(yè)中,任選2個,作為第一、二志愿,有種填法,②、第一二志愿填好后,在剩下的5個專業(yè)中任選3個,作為第三四五志愿,有種填法,則該學(xué)生有30×60=1800種不同的填法;故答案為:1800.點睛:(1)解排列組合問題要遵循兩個原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組.注意各種分組類型中,不同分組方法的求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)時,征地面積最大.【解析】試題分析:(1)借助題設(shè)條件運用梯形面積公式建立函數(shù)關(guān)系求解;(2)依據(jù)題設(shè)運用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系進(jìn)行探求.試題解析:(1)連接,可得,,,,所以,.(2),令,∴(舍)或者.因為,所以時,,時,,所以當(dāng)時,取得最大,故時,征地面積最大.考點:梯形面積公式、導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系等有關(guān)知識的綜合運用.18、(1)見解析;(2).【解析】

(1)根據(jù)已知可得和,由線面垂直判定定理可證平面,再由面面垂直判定定理證得平面⊥平面.(2)解法一:向量法,設(shè),以為原點,作,以的方向分別為軸,軸的正方向,建空間直角坐標(biāo)系,求得的坐標(biāo),運用向量的坐標(biāo)表示和向量的垂直條件,求得平面和平面的的法向量,再由向量的夾角公式,計算即可得到所求的值.解法二:三垂線法,連接AC交BD于O,連接EO、FO,過點F做FM⊥EC于M,連OM,由已知可以證明FO⊥面AEC,∠FMO即為二面角A-EC-F的平面角,通過菱形的性質(zhì)、勾股定理和等面積法求得cos∠FMO,得到答案.解法三:射影面積法,連接AC交BD于O,連接EO、FO,根據(jù)已知條件計算,,二面角的余弦值cosθ=,即可求得答案.【詳解】(1)證明:連結(jié)四邊形是菱形,,⊥平面,平面,,,平面,平面,平面,平面⊥平面.(2)解:解法一:設(shè),四邊形是菱形,,、為等邊三角形,,是的中點,,⊥平面,,在中有,,,以為原點,作,以的方向分別為軸,軸的正方向,建空間直角坐標(biāo)系如圖所示,則所以,,設(shè)平面的法向量為,由得設(shè),解得.設(shè)平面的法向量為,由得設(shè),解得.設(shè)二面角的為,則結(jié)合圖可知,二面角的余弦值為.解法二:∵EB⊥面ABCD,∴∠EAB即為EA與平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1連接AC交BD于O,連接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,F(xiàn)O=EO=,EF=2,EO2+FO2=EF2,∴FO⊥EO又AC⊥面BEFD,FO?面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO?面AEC,∴FO⊥面AEC又EC?面AEC,∴FO⊥EC過點F做FM⊥EC于M,連OM,又FO⊥EC,FM∩FO=F,FM、FO?面FMO,∴EC⊥面FMOOM?面FMO,∴EC⊥MO∴∠FMO即為二面角A-EC-F的平面角AC⊥面BEFD,EO?面BEFD,∴AC⊥EO又O為AC的中點,∴EC=AE=Rt△OEC中,OC=,EC=,∴OE=,∴OM=Rt△OFM中,OF=,OM=,∴FM=∴cos∠FMO=即二面角A-EC-F的余弦值為解法三:連接AC交BD于O,連接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,F(xiàn)O=EO=,EF=2,EO2+FO2=EF2,∴FO⊥EO又AC⊥面BEFD,FO?面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO?面AEC,∴FO⊥面AEC又∵EB⊥面ABCD,∴∠EAB即為EA與平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1在Rt△EBC、Rt△FDC中可得FC=EC=在△EFC中,F(xiàn)C=EC=,EF=2,∴在△AEC中,AE=EC=,O為AC中點,∴OE⊥OC在Rt△OEC,OE=,OC=,∴設(shè)△EFC、△OEC在EC邊上的高分別為h、m,二面角A-EC-F的平面角設(shè)為θ,則cosθ=即二面角A-EC-F的余弦值為.本題考查平面垂直的證明和二面角的計算,屬于中檔題.19、(1)(i);(ii)6.415萬臺;(2)7839.3元.【解析】分析:(1)(i)根據(jù)平均數(shù)公式可求出與的值,從而可得樣本中心點的坐標(biāo),從而求可得公式中所需數(shù)據(jù),求出,再結(jié)合樣本中心點的性質(zhì)可得,進(jìn)而可得關(guān)于的回歸方程;(ii)將代入所求回歸方程,即可的結(jié)果;(2)由題知9月份日銷量(萬臺)服從正態(tài)分布,則,根據(jù)正態(tài)曲線的對稱性求出各區(qū)間上的概率,進(jìn)而可得結(jié)果.詳解:(1)(i)因為所以,所以關(guān)于的線性回歸方程為(ii)當(dāng)時,(萬臺)(注:若,當(dāng)時,(萬臺)第(1)小問共得5分,即扣1分)(2)由題知9月份日銷量(萬臺)服從正態(tài)分布.則.日銷量的概率為.日銷量的概率為.日銷量的概率為.所以每位員工當(dāng)月的獎勵金額總數(shù)為元點睛:求回歸直線方程的步驟:①依據(jù)樣本數(shù)確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.20、(1);(2)證明見解析.【解析】

(1)運用橢圓的定義和勾股定理,可得a,b,進(jìn)而得到橢圓方程;

(2)由題意可設(shè)直線AB的方程為y=k(x-2),求得M的坐標(biāo),聯(lián)立橢圓方程,運用韋達(dá)定理,以及直線的斜率公式,結(jié)合等差數(shù)列的中項性質(zhì),化簡整理,即可得證.【詳解】解:(1)因為點在上,且軸,所以,設(shè)橢圓左焦點為,則,,中,,所以.所以,,又,故橢圓的方程為;(2)證明:由題意可設(shè)直線的方程為,令得,的坐標(biāo)為,由得,,設(shè),,,,則有,①.記直線,,的斜率分別為,,,從而,,.因為直線的方程為,所以,,所以②.①代入②得,又,所以,故直線,,的斜率成等差數(shù)列.本題考查橢圓方程的求法,注意運用點滿足橢圓方程,考查直線的斜率成等差數(shù)列,注意運用聯(lián)立直線方程和橢圓方程,運用韋達(dá)定理,考查化簡整理的運算能力,屬于中檔題.21、(1).(2)見解析(3)【解析】

試題分析:(1)根據(jù)題意知與的奇偶性相同,誤差只能是偶數(shù),由此寫出的可能取值;(2)用列舉法求出基本事件數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論