版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁云南現(xiàn)代職業(yè)技術(shù)學(xué)院
《招貼設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是2、在人工智能的決策樹算法中,當(dāng)進(jìn)行特征選擇來構(gòu)建決策樹時,以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征3、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂作品,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂作品,生成新的旋律和節(jié)奏B.可以與人類音樂家合作,共同創(chuàng)作出獨(dú)特的音樂作品C.人工智能生成的音樂作品在藝術(shù)價值和創(chuàng)造性上能夠超越人類音樂家的作品D.為音樂創(chuàng)作提供新的靈感和可能性,但不能完全取代人類的創(chuàng)造力4、人工智能中的強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制。假設(shè)一個機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會在復(fù)雜環(huán)境中行走和避障,以下關(guān)于機(jī)器人強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以在沒有任何先驗(yàn)知識的情況下,通過隨機(jī)探索快速學(xué)會有效的行走和避障策略B.強(qiáng)化學(xué)習(xí)中的獎勵設(shè)置對機(jī)器人的學(xué)習(xí)效果沒有關(guān)鍵影響,只要有獎勵就行C.結(jié)合機(jī)器人的物理模型和環(huán)境模型,可以為強(qiáng)化學(xué)習(xí)提供更好的先驗(yàn)知識,加速學(xué)習(xí)過程D.機(jī)器人的強(qiáng)化學(xué)習(xí)只適用于簡單的環(huán)境,對于復(fù)雜多變的真實(shí)環(huán)境無法應(yīng)用5、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對于文本、圖像等非數(shù)值型數(shù)據(jù)無法處理6、人工智能中的計算機(jī)視覺技術(shù)能夠讓計算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計算機(jī)視覺的描述,不準(zhǔn)確的是()A.目標(biāo)檢測、圖像分類和語義分割是計算機(jī)視覺中的常見任務(wù)B.計算機(jī)視覺技術(shù)可以應(yīng)用于自動駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域C.計算機(jī)視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動了計算機(jī)視覺技術(shù)的發(fā)展7、在人工智能的發(fā)展中,倫理和社會問題日益受到關(guān)注。例如,自動駕駛汽車在面臨不可避免的事故時,需要做出決策以最小化傷亡。這種情況下,以下哪種觀點(diǎn)是需要重點(diǎn)考慮的?()A.優(yōu)先保護(hù)乘客的生命安全B.隨機(jī)選擇保護(hù)對象C.按照預(yù)設(shè)的規(guī)則進(jìn)行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會影響8、人工智能中的可解釋性是一個重要的研究方向。假設(shè)要解釋一個深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運(yùn)作非常復(fù)雜,無法進(jìn)行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對于實(shí)際應(yīng)用沒有太大意義,只要模型性能好就行9、強(qiáng)化學(xué)習(xí)是另一種機(jī)器學(xué)習(xí)方法,通過與環(huán)境進(jìn)行交互并根據(jù)獎勵信號來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.強(qiáng)化學(xué)習(xí)中的智能體通過不斷嘗試不同的動作來獲取最大的累積獎勵B.強(qiáng)化學(xué)習(xí)適用于解決序列決策問題,如機(jī)器人控制和游戲策略制定C.強(qiáng)化學(xué)習(xí)不需要對環(huán)境有先驗(yàn)的了解,完全通過與環(huán)境的交互來學(xué)習(xí)D.強(qiáng)化學(xué)習(xí)的訓(xùn)練過程簡單快速,通常能夠在短時間內(nèi)得到最優(yōu)的策略10、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)11、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點(diǎn)選擇合適的預(yù)訓(xùn)練模型和遷移策略12、人工智能在金融領(lǐng)域的應(yīng)用越來越廣泛,如風(fēng)險評估、投資決策和欺詐檢測等。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,不準(zhǔn)確的是()A.可以通過分析大量的金融數(shù)據(jù),更準(zhǔn)確地評估風(fēng)險和預(yù)測市場趨勢B.能夠?yàn)橥顿Y者提供個性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應(yīng)用完全消除了風(fēng)險和錯誤,保障了金融交易的絕對安全D.金融機(jī)構(gòu)在采用人工智能技術(shù)時,需要考慮合規(guī)性和監(jiān)管要求13、人工智能中的情感分析旨在判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機(jī)器學(xué)習(xí)的方法C.基于規(guī)則的方法D.基于人工判斷的方法14、在自然語言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評論,以確定消費(fèi)者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預(yù)定義的情感詞來判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動學(xué)習(xí)語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)15、假設(shè)要開發(fā)一個能夠理解人類情感和意圖的人工智能助手,例如根據(jù)用戶的情緒提供相應(yīng)的服務(wù),以下哪種技術(shù)和數(shù)據(jù)可能是關(guān)鍵的?()A.情感計算技術(shù)和情感標(biāo)注數(shù)據(jù)B.意圖識別技術(shù)和用戶行為數(shù)據(jù)C.自然語言理解技術(shù)和多模態(tài)數(shù)據(jù)D.以上都是16、在人工智能的機(jī)器人控制領(lǐng)域,強(qiáng)化學(xué)習(xí)可以讓機(jī)器人通過與環(huán)境的交互不斷優(yōu)化自己的行為。假設(shè)一個機(jī)器人需要學(xué)會在不同地形上行走,以下哪個因素對于強(qiáng)化學(xué)習(xí)的效果影響最大?()A.環(huán)境的復(fù)雜度B.機(jī)器人的初始狀態(tài)C.獎勵函數(shù)的設(shè)計D.機(jī)器人的硬件性能17、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎勵函數(shù)的設(shè)計,哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎勵B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎勵C.給予固定的獎勵值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎勵,增加學(xué)習(xí)的不確定性18、在人工智能的倫理原則中,“公平性”是一個重要的考量因素。假設(shè)一個人工智能招聘系統(tǒng)對不同性別、種族的候選人給出了不同的評價結(jié)果。以下關(guān)于解決這種公平性問題的方法,哪一項(xiàng)是不正確的?()A.對數(shù)據(jù)進(jìn)行預(yù)處理,消除可能導(dǎo)致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評估指標(biāo),對模型進(jìn)行監(jiān)測和改進(jìn)19、人工智能中的弱人工智能和強(qiáng)人工智能是兩個不同的概念。假設(shè)我們在討論人工智能的發(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計算能力20、在人工智能的發(fā)展中,可解釋性是一個重要的研究方向。假設(shè)一個用于信用評估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測結(jié)果準(zhǔn)確就行B.可解釋性只對研究人員有意義,對于實(shí)際應(yīng)用中的用戶不重要C.通過特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無法解釋的黑盒部分二、簡答題(本大題共5個小題,共25分)1、(本題5分)談?wù)勛藨B(tài)估計在計算機(jī)視覺中的應(yīng)用。2、(本題5分)談?wù)劸矸e神經(jīng)網(wǎng)絡(luò)的特點(diǎn)和優(yōu)勢。3、(本題5分)解釋人工智能在物理學(xué)中的應(yīng)用案例。4、(本題5分)解釋人工智能在國際貿(mào)易和金融監(jiān)管中的應(yīng)用。5、(本題5分)簡述零樣本學(xué)習(xí)和少樣本學(xué)習(xí)的特點(diǎn)。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)剖析某智能圖書館管理系統(tǒng)中人工智能的功能,如書籍推薦和讀者行為分析。2、(本題5分)考察一個基于人工智能的智能語音導(dǎo)航系統(tǒng),討論其如何準(zhǔn)確理解用戶目的地和提供最佳路線。3、(本題5分)分析一個利用人工智能進(jìn)行民間藝術(shù)作品版權(quán)保護(hù)的實(shí)例,討論其技術(shù)手段和有效性。4、(本題5分)剖析某智能民間故事改編系統(tǒng)中人工智能的情節(jié)重構(gòu)和主題升華能力。5、(本題5分)分析一款利用人工智能進(jìn)行文本自動分類的軟件,研究其分類算法和在信息管理中的作用。四、操作題(本大題共3個小題,共30分)1、(本題10分)運(yùn)用Python的Scikit-learn庫,實(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 測量圓柱體積的題目及答案
- 永州教資面試題目及答案
- 養(yǎng)老院無障礙設(shè)施管理使用制度
- 養(yǎng)老院老人生活娛樂活動策劃制度
- 養(yǎng)老院老人護(hù)理評估制度
- 化工企業(yè)環(huán)境管理制度
- 金屬材料分析電火花制度
- 酒店工程部獎罰制度
- 初中文言文闖關(guān)題目及答案
- 初一參數(shù)方程競賽題目及答案
- “黨的二十屆四中全會精神”專題題庫及答案
- 2025年天翼云解決方案架構(gòu)師認(rèn)證考試模擬題庫(200題)答案及解析
- 2026年西藏自治區(qū)政府部門所屬事業(yè)單位人才引進(jìn)(130人)筆試備考試題及答案解析
- 油氣開采畢業(yè)論文
- 血凝d-二聚體和fdp課件
- 2026-2031中國房地產(chǎn)估價市場分析預(yù)測研究報告
- 天津市和平區(qū)2025年高二化學(xué)第一學(xué)期期末監(jiān)測試題含解析
- 人造噴霧造景施工方案
- 2025年大宗商品數(shù)字化交易平臺可行性研究報告
- 商用飲水機(jī)維修知識培訓(xùn)
- 供熱企業(yè)環(huán)保知識培訓(xùn)課件
評論
0/150
提交評論