天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)天津公安警官職業(yè)學(xué)院《機(jī)器視覺(jué)基礎(chǔ)與實(shí)踐》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,需要將不同視角或時(shí)間拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)匹配的圖像配準(zhǔn)方法對(duì)圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實(shí)現(xiàn)準(zhǔn)確的圖像配準(zhǔn)C.圖像配準(zhǔn)不需要考慮圖像的分辨率和比例尺差異D.深度學(xué)習(xí)在圖像配準(zhǔn)中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效2、計(jì)算機(jī)視覺(jué)中的目標(biāo)計(jì)數(shù)是估計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要在一張人群圖像中準(zhǔn)確計(jì)數(shù)人數(shù),以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,正確的是:()A.基于檢測(cè)的計(jì)數(shù)方法通過(guò)檢測(cè)每個(gè)個(gè)體來(lái)實(shí)現(xiàn)計(jì)數(shù),對(duì)密集場(chǎng)景效果好B.基于回歸的計(jì)數(shù)方法直接預(yù)測(cè)目標(biāo)數(shù)量,計(jì)算速度快但精度較低C.深度學(xué)習(xí)中的注意力機(jī)制在目標(biāo)計(jì)數(shù)中沒(méi)有作用,不能提高計(jì)數(shù)準(zhǔn)確性D.目標(biāo)計(jì)數(shù)只需要考慮目標(biāo)的外觀特征,不需要考慮圖像的上下文信息3、計(jì)算機(jī)視覺(jué)中的工業(yè)檢測(cè)任務(wù)需要檢測(cè)產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對(duì)一批電子產(chǎn)品的外觀進(jìn)行檢測(cè),要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測(cè)方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺(jué)檢測(cè)B.人工目檢C.抽樣檢測(cè)D.基于統(tǒng)計(jì)的檢測(cè)4、視頻分析是計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測(cè)異常行為,如打架、盜竊等。對(duì)于這種實(shí)時(shí)性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測(cè)?()A.對(duì)每一幀圖像單獨(dú)進(jìn)行分析B.基于光流的方法跟蹤對(duì)象運(yùn)動(dòng)C.利用深度學(xué)習(xí)模型直接對(duì)視頻進(jìn)行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除5、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)關(guān)鍵任務(wù)。假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的城市交通場(chǎng)景中準(zhǔn)確檢測(cè)出各種車輛類型的系統(tǒng),需要考慮車輛的不同尺寸、形狀和姿態(tài),以及光照、陰影和遮擋等因素的影響。以下哪種目標(biāo)檢測(cè)算法在處理這種復(fù)雜場(chǎng)景時(shí)具有較好的性能和魯棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO6、計(jì)算機(jī)視覺(jué)中的視頻理解不僅包括對(duì)單個(gè)幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個(gè)電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動(dòng)態(tài)信息和語(yǔ)義信息?()A.基于幀級(jí)特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動(dòng)軌跡的方法D.基于音頻和視頻融合的方法7、在計(jì)算機(jī)視覺(jué)的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過(guò)亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量8、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來(lái)。假設(shè)要對(duì)一張包含多個(gè)水果的圖像進(jìn)行精確分割,每個(gè)水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時(shí)表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測(cè)的分割D.基于深度學(xué)習(xí)的語(yǔ)義分割9、計(jì)算機(jī)視覺(jué)中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要分析一段視頻中物體的運(yùn)動(dòng)速度和方向。以下關(guān)于光流計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)比較連續(xù)幀之間的像素差異來(lái)計(jì)算光流B.光流計(jì)算能夠?yàn)橐曨l中的目標(biāo)跟蹤和行為分析提供重要信息C.無(wú)論視頻的幀率和分辨率如何,光流計(jì)算都能準(zhǔn)確地估計(jì)像素運(yùn)動(dòng)D.深度學(xué)習(xí)方法也被應(yīng)用于光流計(jì)算,提高了計(jì)算的準(zhǔn)確性和效率10、在計(jì)算機(jī)視覺(jué)的視頻壓縮中,為了在保證視覺(jué)質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)11、在計(jì)算機(jī)視覺(jué)的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個(gè)城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項(xiàng)是不正確的?()A.首先需要對(duì)局部圖像進(jìn)行特征提取和匹配,找到它們之間的對(duì)應(yīng)關(guān)系B.可以使用圖像變形和融合技術(shù)來(lái)消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機(jī)參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學(xué)習(xí)的方法能夠自動(dòng)學(xué)習(xí)全景圖像的生成規(guī)律,提高拼接效果12、在進(jìn)行圖像增強(qiáng)時(shí),我們常常需要在保持圖像細(xì)節(jié)的同時(shí)改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波13、對(duì)于視頻中的目標(biāo)跟蹤任務(wù),假設(shè)目標(biāo)在視頻中經(jīng)歷了快速的外觀變化和嚴(yán)重的遮擋。以下哪種策略有助于保持跟蹤的準(zhǔn)確性和穩(wěn)定性?()A.結(jié)合目標(biāo)的運(yùn)動(dòng)模型和外觀模型進(jìn)行預(yù)測(cè)B.僅依賴目標(biāo)的初始外觀特征進(jìn)行跟蹤C(jī).當(dāng)出現(xiàn)遮擋時(shí),停止跟蹤并等待目標(biāo)重新出現(xiàn)D.隨機(jī)調(diào)整跟蹤算法的參數(shù)14、計(jì)算機(jī)視覺(jué)中的深度估計(jì)是計(jì)算場(chǎng)景中物體與相機(jī)的距離。假設(shè)我們要為一個(gè)增強(qiáng)現(xiàn)實(shí)應(yīng)用估計(jì)場(chǎng)景的深度信息,以下哪種深度估計(jì)方法能夠在實(shí)時(shí)性和準(zhǔn)確性之間取得較好的平衡?()A.基于立體視覺(jué)的方法B.基于結(jié)構(gòu)光的方法C.基于深度學(xué)習(xí)的單目深度估計(jì)方法D.基于飛行時(shí)間(ToF)原理的方法15、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要對(duì)圖像中的物體、關(guān)系和上下文進(jìn)行綜合分析。假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,以下哪種信息可能是最關(guān)鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關(guān)系C.圖像的亮度和對(duì)比度D.圖像的拍攝角度16、在計(jì)算機(jī)視覺(jué)的姿態(tài)估計(jì)任務(wù)中,假設(shè)要估計(jì)一個(gè)物體在三維空間中的姿態(tài),例如估計(jì)一個(gè)機(jī)器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實(shí)現(xiàn)這一目標(biāo)?()A.基于立體視覺(jué)的方法,通過(guò)多個(gè)相機(jī)的觀測(cè)B.利用深度學(xué)習(xí)模型直接預(yù)測(cè)姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進(jìn)行估計(jì)D.隨機(jī)猜測(cè)物體的姿態(tài)17、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠在交通場(chǎng)景中檢測(cè)車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標(biāo)檢測(cè)算法可能更適合應(yīng)對(duì)這種復(fù)雜情況?()A.基于傳統(tǒng)特征的檢測(cè)算法,如HOG特征結(jié)合SVM分類器B.基于深度學(xué)習(xí)的FasterR-CNN算法C.基于模板匹配的檢測(cè)算法D.基于顏色特征的檢測(cè)算法18、在計(jì)算機(jī)視覺(jué)的圖像語(yǔ)義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時(shí)包含大物體和小物體的場(chǎng)景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對(duì)多尺度問(wèn)題,通過(guò)調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問(wèn)題,但計(jì)算量大C.空洞卷積在處理多尺度特征時(shí)會(huì)引入大量的噪聲,降低分割精度D.圖像語(yǔ)義分割中多尺度問(wèn)題無(wú)法解決,只能盡量避免處理這類圖像19、在圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進(jìn)行配準(zhǔn),以下哪個(gè)因素對(duì)于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲20、在計(jì)算機(jī)視覺(jué)中,圖像分類是一項(xiàng)重要任務(wù)。假設(shè)我們要對(duì)大量的動(dòng)物圖片進(jìn)行分類,將其分為貓、狗、鳥(niǎo)等類別。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.傳統(tǒng)的機(jī)器學(xué)習(xí)方法如支持向量機(jī)(SVM)在處理大規(guī)模圖像數(shù)據(jù)時(shí),性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語(yǔ)義信息對(duì)分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來(lái)擴(kuò)充數(shù)據(jù)集二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述計(jì)算機(jī)視覺(jué)在金融領(lǐng)域的應(yīng)用。2、(本題5分)簡(jiǎn)述圖像的多尺度分析方法。3、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行賽事裁判輔助?三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)觀察某旅游目的地的宣傳視頻設(shè)計(jì),分析其如何通過(guò)畫(huà)面、音樂(lè)和解說(shuō),展示景點(diǎn)魅力,激發(fā)游客的旅行欲望。2、(本題5分)某城市的旅游宣傳視頻設(shè)計(jì)精彩,展現(xiàn)了城市的魅力。請(qǐng)研究宣傳視頻在拍攝角度、剪輯節(jié)奏、音樂(lè)配合上的手法,以及如何吸引游客前來(lái)旅游。3、(本題5分)分析某辦公用品品牌的產(chǎn)品目錄設(shè)計(jì),觀察其如何通過(guò)簡(jiǎn)潔明了的排版和準(zhǔn)確的產(chǎn)品描述,滿足企業(yè)采

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論