版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年中考數(shù)學(xué)總復(fù)習(xí)《二次函數(shù)綜合(角度問(wèn)題)》專項(xiàng)測(cè)試卷(附
答案)
學(xué)校:姓名:班級(jí):考號(hào):
1.如圖,拋物線法一4與X軸交于A、C兩點(diǎn)(點(diǎn)A在點(diǎn)C的右側(cè)),與y軸交于點(diǎn)
(1)求拋物線的表達(dá)式;
(2)點(diǎn)尸在拋物線上,當(dāng)NMA+NCBO=45。時(shí),求點(diǎn)尸的橫坐標(biāo).
2.如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(T。)、8(3,0),與>軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
⑵若點(diǎn)。為拋物線的頂點(diǎn),連接BD,求四邊形088的面積
⑶若點(diǎn)尸是拋物線圖象上的一點(diǎn),且滿足加=加。,請(qǐng)直接寫出滿足要求的所有點(diǎn)尸的
坐標(biāo).
3.如圖,拋物線W—V+bx+c經(jīng)過(guò)點(diǎn)4-2,0),點(diǎn)8(。,4)
(1)求這條拋物線的表達(dá)式和它與X軸的另一個(gè)交點(diǎn)c;
(2)點(diǎn)尸是線段8C上一點(diǎn),連結(jié)AP交拋物線對(duì)稱軸于點(diǎn)Q,如果加P=求點(diǎn)。的坐
標(biāo);
⑶將拋物線沿y軸向下平移加個(gè)單位,所得新拋物線與>軸交于點(diǎn),過(guò)點(diǎn)。作。軸
交新拋物線于點(diǎn)E,射線E。交新拋物線于點(diǎn)/,如果EO=2OF,求優(yōu)的值.
4.如圖1,已知拋物線丫=加+法-3的圖象與X軸交于A、3兩點(diǎn),與y軸交于c點(diǎn),A點(diǎn)
的坐標(biāo)為(T。),且拋物線對(duì)稱軸為直線x=L
⑵如圖2,連接BC,P為線段下方拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作尸MLx軸交BC于點(diǎn)
M,作軸交y軸于點(diǎn)N,求正河+PN的最大值及此時(shí)點(diǎn)尸的坐標(biāo);
⑶如圖3,連接AC、BC,在拋物線上是否存在一點(diǎn)Q,使得ZACO+NQ3C=45。,若存在,
直接寫出點(diǎn)。的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
5.在平面直角坐標(biāo)系中,拋物線丁=-苫2+次+3與X軸交于點(diǎn)A(-I,O)和點(diǎn)5,與y軸交于
點(diǎn)C.
(1)求》的值;
(2)如圖,M是第一象限拋物線上的點(diǎn),ZMAB=ZACO,求點(diǎn)M的橫坐標(biāo);
⑶將此拋物線沿水平方向平移,得到的新拋物線記為£,£與丁軸交于點(diǎn)N.設(shè)上的頂
點(diǎn)橫坐標(biāo)為小NC的長(zhǎng)為d.
①求d關(guān)于〃的函數(shù)解析式;
②£與X軸圍成的區(qū)域記為。,。與AMC內(nèi)部重合的區(qū)域(不令邊界)記為W.當(dāng)d隨
〃的增大而增大,且W內(nèi)恰好有兩個(gè)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)時(shí),直接寫出”的取值
范圍.
6.如圖,在平面直角坐標(biāo)系中,拋物線y=/+"+c與x軸交于A,5兩點(diǎn)(A點(diǎn)在5點(diǎn)
左側(cè)),與y軸交于點(diǎn)。(。,-3),對(duì)稱軸是直線為=1,直線>=一+加經(jīng)過(guò)點(diǎn)5,C.
(1)求拋物線和A,5兩點(diǎn)坐標(biāo);
⑵點(diǎn)"為y軸上一點(diǎn),是否存在點(diǎn)使得△與△A3C相似?若存在,請(qǐng)求出點(diǎn)
"的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)尸為拋物線上一點(diǎn)(點(diǎn)尸與點(diǎn)5不重合),且使得dAC中有一個(gè)角是45。,請(qǐng)直
接寫出點(diǎn)尸的坐標(biāo).
7.綜合與探究
如圖,已知拋物線片加+-2(a>0)與%軸交于點(diǎn)A(TO),3(2,0),與y軸交于點(diǎn)物P
是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)尸的橫坐標(biāo)為社
(1)求拋物線的函數(shù)表達(dá)式.
(2)若N8"=45。,求加的值.
8.如圖,平面直角坐標(biāo)系中,拋物線y=Y+6x+c與y軸交于點(diǎn)C與%軸交于A,B兩
點(diǎn),直線y=f+3恰好經(jīng)過(guò)5,。兩點(diǎn).
(1)求拋物線的頂點(diǎn)坐標(biāo);
⑵已知點(diǎn)又是線段BC上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN//V軸,交拋物線于點(diǎn)N,以線段MN為
直徑作。G,求OG的周長(zhǎng)最大值;
(3)設(shè)拋物線的頂點(diǎn)為。,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得ZAPD=ZACB?若存在,
求出點(diǎn)尸的坐標(biāo).若不存在,說(shuō)明理由.
9.綜合與探究
如圖,拋物線y=一卜一4與%軸交于A,5兩點(diǎn)(點(diǎn)A在點(diǎn)5的左側(cè)),與y軸交于
點(diǎn)C連接AGBC.點(diǎn)網(wǎng)砌為線段。3上的動(dòng)點(diǎn)(與0,5不重合),過(guò)點(diǎn)。作入軸的
垂線與線段BC交于點(diǎn)E,與拋物線交于點(diǎn)尸.
(1)求直線BC的函數(shù)表達(dá)式和點(diǎn)A的坐標(biāo).
(2)當(dāng)點(diǎn)E為線段的中點(diǎn)時(shí),求線段跖的長(zhǎng).
(3)在拋物線上是否存在點(diǎn)G,使得NABG=/CAB?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若
不存在,請(qǐng)說(shuō)明理由.
10.如圖,拋物線,=弟+寸+。與X軸交于點(diǎn)A和點(diǎn)3(4,0),與y軸交于點(diǎn)C(0,2),連接BC,
⑵小明探究點(diǎn)。位置時(shí)發(fā)現(xiàn):如圖1,點(diǎn)。在第一象限內(nèi)的拋物線上,連接BDCD,ABCD
面積存在最大值,請(qǐng)幫助小明求出△38面積的最大值;
(3)小明進(jìn)一步探究點(diǎn)。位置時(shí)發(fā)現(xiàn):如圖2,點(diǎn)。在拋物線上移動(dòng),連接CD,存在
ZDCB=ZABC,請(qǐng)幫助小明求出=時(shí)點(diǎn)D的坐標(biāo).
11.如圖,在平面直角坐標(biāo)系中,拋物線V=Y-2x+c經(jīng)過(guò)點(diǎn)4(0,-1),點(diǎn)P,。在此拋物線
上,其橫坐標(biāo)分別為加,2皿加>0),連接AP,AQ.
(1)當(dāng)點(diǎn)。與此拋物線的頂點(diǎn)重合時(shí),求機(jī)的值.
(2)當(dāng)ZPAQ的邊與x軸平行時(shí),求點(diǎn)尸與點(diǎn)。的縱坐標(biāo)的差.
(3)設(shè)此拋物線在點(diǎn)A與點(diǎn)尸之間部分(包括點(diǎn)A和點(diǎn)尸)的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)的
差為4,在點(diǎn)A與點(diǎn)。之間部分(包括點(diǎn)A和點(diǎn)Q)的最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)的差為為,
當(dāng)為-4=利時(shí),直接寫出機(jī)的值.
12.如圖1,拋物線y="+6x+c與%軸分別交于點(diǎn)A(-1,O),3(3,0),與y軸交于點(diǎn)C(0,3),
點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),點(diǎn)P坐標(biāo)(L-2).
(1)求拋物線的解析式;
⑵如圖2,將拋物線工軸上方的圖象沿%軸翻折,翻折后的圖象和原拋物線圖象組成
一個(gè)新的圖象(如圖2實(shí)線部分和虛線部分,),記為圖象L.若直線y=與該新圖
象£恰好有三個(gè)公共點(diǎn),請(qǐng)求出此時(shí)n的取值范圍.
⑶在(2)件下的新圖象£,連接OP,若點(diǎn)。在新圖象上上且々30+403=90。,求點(diǎn)。
的坐標(biāo).
13.如圖,在平面直角坐標(biāo)系中,已知拋物線廣加+樂(lè)-3(叱0)與%軸交于4(3,0)、5(-1,0)
兩點(diǎn),與y軸交于點(diǎn)C連接AC.
(1)求拋物線的解析式;
(2)在對(duì)稱軸上是否存在一點(diǎn)M,使ZMC4=NM4C,若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不
存在,請(qǐng)說(shuō)明理由;
⑶若點(diǎn)尸是直線AC下方的拋物線上的一個(gè)動(dòng)點(diǎn),作PDLAC于點(diǎn)。,當(dāng)陽(yáng)的值最大時(shí),
求此時(shí)點(diǎn)P的坐標(biāo)及尸口的最大值.
14.如圖,拋物線丫=:/+6尤+。與%軸交于點(diǎn)A,點(diǎn)5,與y軸交于點(diǎn)C,直線>經(jīng)
過(guò)點(diǎn)5,點(diǎn)C
(1)試求拋物線的解析式;
(2)點(diǎn)尸是直線BC下方拋物線上一動(dòng)點(diǎn),當(dāng)出CP的面積最大時(shí),求點(diǎn)尸的坐標(biāo);
⑶若M是拋物線上一點(diǎn),且ZMCB=NABC,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
15.如圖,拋物線y=?加-〃Z.4租與X軸交于A,8兩點(diǎn)(點(diǎn)B位于點(diǎn)A的右邊),與y軸交
于點(diǎn)C(OT),連接BC,P是拋物線上的一動(dòng)點(diǎn).
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式以及48兩點(diǎn)的坐標(biāo).
⑵若點(diǎn)尸位于第四象限,過(guò)點(diǎn)尸作PQLBC,求尸。的最大值.
(3)點(diǎn)"在拋物線的對(duì)稱軸上,且ZAWC=45。,求點(diǎn)H的坐標(biāo).
參考答案
1.⑴/=#一%_4
(2)?或5
【分析】(1)先將%=。代入y=$2+6x-4,求出點(diǎn)5的坐標(biāo),根據(jù)04=08,得到點(diǎn)4的
坐標(biāo),利用待定系數(shù)法將點(diǎn)A坐標(biāo)代入即可求解;
(2)先求出點(diǎn)。的坐標(biāo),由0A=03,可得AAOB是等腰直角三角形,得到/OAB=NOZM=45。,
根據(jù)NPR4+NCBO=45。,則NPBA<45。,可得點(diǎn)尸在y軸右側(cè),分點(diǎn)尸在入軸上方和下方兩
種情況討論即可.
【詳解】(1)解:將工=。代入丫=$2+法-4,則k~4,
,B(0,-4),
OA=OB,
:.A(4,0),
將點(diǎn)A坐標(biāo)代入得0=;x42+46-4,
解得:b=j
???拋物線的表達(dá)式為:尸32-夫-4;
(2)解:令y=gx2_;x_4=0,則%2_%_12=0,
解得:x=4或x=-3,
C(-3,0),
OA=OB,
???^05是等腰直角三角形,
/.NC?4=45。,
/.ZOAB=ZOBA=45°,
:ZPBA+Z.CBO=45°,
,ZPBA<45°,
,點(diǎn)尸在y軸右側(cè),
當(dāng)點(diǎn)尸在X軸下方時(shí),設(shè)OP延長(zhǎng)線交X軸于點(diǎn)E,
貝UAPBA+ACBO+ZOBA=90°,即ZCBP=9Q°,
?//CBO+NOBP=/OBP+/OEB=90。,
,ZCBO=ZOEB,
tanZOEB=—=tanZCBO=—=-,
OEOB4
設(shè)直線3尸的解析式為y=履-4,則0=g-4,
解得:左q,
???直線3尸的解析式為y=|x-4,
11o
令丁2_—x-4=—x-4,即4x2-13x=0
解得:尤=,或x=。(舍去),
???點(diǎn)尸的橫坐標(biāo)為?;
當(dāng)點(diǎn)尸在入軸上方時(shí),設(shè)與X軸交于點(diǎn)尸,
貝(JNPBA+Z.CBO=AOBA=45°,
NPBA+NOBF=ZOBA=45。,
/.ZOBF=ZCBO,
":BOIAC,
:.ZCOB=ZBOF=90°,
":BO=BO,
:.ACOB注△尸OB(ASA),
/.OF=OC=3,
:.尸(3,0),
設(shè)直線BP的解析式為尸區(qū)-4,則0=3"4,
解得:4=g,
「?直線BPf的解析式為y=?-4,
令;%2_;%_4=g%_4,§Px2-5x=0
解得:x=5或x=。(舍去),
???點(diǎn)P的橫坐標(biāo)為5;
綜上,點(diǎn)尸的橫坐標(biāo)為『或5.
【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì)、一次函數(shù)與幾何綜合、待定系數(shù)法求解
析式和拋物線上點(diǎn)的坐標(biāo)和特征,解直角三角形,全等三角形的判定與性質(zhì),靈活運(yùn)
用所學(xué)知識(shí)求解是解決本題的關(guān)鍵.
2.⑴y=x?-2x-3
(2)7.5
(3)4(2,-3),C(4,5)
【分析】(1)運(yùn)用待定系數(shù)法將A(T,。),碎0),C(0,-3)代入y=&+bx+c,即可求解;
(2)利用待定系數(shù)法求出直線BC的解析式,運(yùn)用配方法將拋物線解析式化為頂點(diǎn)式即
可求得頂點(diǎn)坐標(biāo),過(guò)點(diǎn)。作DE,》軸交直線于點(diǎn)E,求得£>E,禾U用,=$,曲+臬3,
根據(jù)四邊形OCDB的面積為S.BCD+S.BCD,即可求解;
(3)先求出點(diǎn)。關(guān)于對(duì)稱軸的對(duì)稱點(diǎn);先運(yùn)用待定系數(shù)法求出直線BC的解析式,再根
據(jù)互相平行的兩直線的關(guān)系求出與BC平行的直線旬的解析式,聯(lián)立拋物線解析式即可
求解.
【詳解】(1)解:設(shè)二次函數(shù)解析式為照一+版+c,其圖象經(jīng)過(guò)點(diǎn)A(TO),3(3,0),C(0,-3),
a-b+c=0[a=1
貝U19〃+3Z?+c=0,解得:卜=—2,
c=-3c=-3
.0?拋物線的解析式為尸2-2x-3;
(2)解:設(shè)直線8C的解析式為y=w+〃,
?.?8(3,0),C(0,-3),
?f3m+n=0
>*j〃=-3'
m=l
解得:
n=-3
「?直線BC的解析式為y=%-3.
?.?y=x2-2x-3=(x-l)2-4,
Z.D(l,-4),
過(guò)點(diǎn)。作DEA軸交直線BC于點(diǎn)E,如圖1,
曲1,-2),
/.DE=-2+4=2,
S.BCD=S.BDE+S,CDE=3*2x2+]X2x\=3;
?.?8(3,0),C(0,-3),
X
??^ABOC=~3X3=4.5
/.四邊形OCDB的面積為S.BCD+S/c?=3+4.5=7.5
(3)解:拋物線上存在點(diǎn)P,使3?=ZABC,理由如下:
如圖2,
①取點(diǎn)C(0「3)關(guān)于對(duì)稱軸x=l的對(duì)稱點(diǎn)耳(2,-3),連接AC,如,
?BC=J32+3?-3A/2f=^(2+1)+3-=3近,
AC=*2+32=回,9=,(3-2『+32=加,
/.BC=P,A,AC=BPX,
?IAB=BA,
△A8CdBA《,
/.ZPtAB=ZABC,
.?.爪2,-3)符合題意;
②當(dāng)直線6A〃BC時(shí),則有N6AB=/ABC,
直線BC的解析式為V=x-3,
,直線布的解析式中一次項(xiàng)系數(shù)為1.
設(shè)與BC平行的直線鉆的解析式為kx+加,
將A(-1,0)代入得:一1+機(jī)=0,
解得:根=1,
/.直線AR的解析式為""I,
聯(lián)立拋物線解析式得:
(y=x+l
[y=x2—2x—39
解得:[比或[:=;(不合題意,舍去),
[y=5[_y=O
6(4,5).
綜上所述,6(2,-3),鳥(4,5).
【點(diǎn)睛】本題考查了二次函數(shù)綜合題,運(yùn)用待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式,
配方法,三角形面積,互相平行的兩直線的關(guān)系等,熟練掌握二次函數(shù)圖象和性質(zhì),
利用待定系數(shù)法求函數(shù)解析式等相關(guān)知識(shí),靈活運(yùn)用方程思想和分類討論思想是解題
關(guān)鍵.
3.(1)k-9+%+4,C(4,o)
(2)。同
(3)3或5
【分析】(1)將點(diǎn)A、5代入拋物線j-qr+bx+c,用待定系數(shù)法求出解析式.
(2)可求直線8C表達(dá)式y(tǒng)=T+4,設(shè)尸(m,-血+4),由NA3P=ZA尸3,得到=則
V22+42=^(m+2)2+(-m+4)2,求出P(2,2),同理可求直線AP表達(dá)式為y=;x+l,當(dāng)%=1時(shí),
y=;+i=|,則。",|[;
(3)新拋物線的表達(dá)式為y=-12+x+4-加,由題意可得DE=2,過(guò)點(diǎn)尸作尸軸,垂
足為H,由。E/""?=2。/得至ijADEOsAFHO,那么告=*=*=:,則陽(yáng)=1,然后分
rLTUrUrLi
情況討論點(diǎn)。在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.
【詳解】(1)解:\,拋物線>法+C經(jīng)過(guò)點(diǎn)A(-2,0),點(diǎn)8(0,4),
—2-2Z?+c=0b=l
c=4,解得c=4'
「?拋物線解析式為、=-;/+》+4,
當(dāng)y=0,-^-x2+x+4=0,
解得:x=4或x=-2,
AC(4,0);
(2)解:由“4,0),A(-2,0)得對(duì)稱軸為直線x=l,
設(shè)直線BC表達(dá)式y(tǒng)=fcr+b(%wO),
代入”得:二=。,
解得:「:;
/.直線BC表達(dá)式y(tǒng)=T+4,
設(shè)P(m,-m+4),
*/ZABP=ZAPB,
??AB=AP,
722+42=+2)2+(-”2+4)2
解得:〃z=2或m=0(舍)
尸(2,2),
同理可求直線AP表達(dá)式為:y=;x+l,
1a
當(dāng)尤=1時(shí),y=-+i=-,
(3)解:設(shè)新拋物線的表達(dá)式為%-]、x+4-加
貝|]。(0,4—m),
\?對(duì)稱軸為直線尤=1,DE//FH
:.E(2,4-m),DE=2,
過(guò)點(diǎn)尸作切D軸,垂足為“,
ADEOsAFHO,
,DEEODO_2
:.FH=l,OH=;DO,
I.將%=—1代入)=一;/+%+4一小得:y^-m
當(dāng)點(diǎn)。在y軸正半軸上時(shí),尸?一1,
切,y軸,
OH=m——,
2
DO_4-m_2
OH~5-1,
m——
2
??TTl=3j
當(dāng)點(diǎn)。在y軸的負(fù)半軸上,則“i,m,
9
?\OH=m—
2
DO_m-4_2
OH-9-T,
m——
2
??m=5,
???綜上所述加的值為3或5.
【點(diǎn)睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度較大,涉及待定系數(shù)法
求函數(shù)解析式,等腰三角形的性質(zhì),兩點(diǎn)間距離公式,平移的性質(zhì)等知識(shí)點(diǎn).
4.(l)y=x2-2x-3
(2)PM+PN最大值為4,此時(shí)尸(2,-3)
⑶存在,。(2,-3)或《弓-2,理由見解析
【分析】(1)利用待定系數(shù)法求解;
(2)先求直線BC表達(dá)式為y=x-3,設(shè)P(八病-2祖-3)(0<〃z<3),
PM+PN=m-3-(m2-2m-3^+m=-rrr+4m=-(i,n-2)-+4,轉(zhuǎn)化為二次函數(shù)求最值即可;
(3)分兩種情況①當(dāng)。點(diǎn)位于上方時(shí),在OC上取一點(diǎn)。,使得OD=OA,連接B£)并
延長(zhǎng)交拋物線與點(diǎn)②當(dāng)。點(diǎn)位于BC下方時(shí),作軸,作于點(diǎn)尸,W與
拋物線的交點(diǎn)為E,利用全等三角形的判定與性質(zhì)進(jìn)行求解即可.
【詳解】(1)解:???已知拋物線y=一+"-3的圖象與x軸交于A、B兩點(diǎn),與>軸交于C點(diǎn),
A點(diǎn)的坐標(biāo)為(TO),且拋物線對(duì)稱軸為直線-1,
a-b-3=O
??b,
-=1
、2a
解得:[二,
二?解析式為:y^x2-2x-3;
(2)解:TA點(diǎn)的坐標(biāo)為(TO),且拋物線對(duì)稱軸為直線x=i,
8(3,0),
當(dāng)X=0,y=-3,
AC(0,-3),
設(shè)直線BC表達(dá)式為:y=kx+b,
.戶左+6=0
**[Z?=-3'
解得〔二
???直線BC表達(dá)式為:y=x-3,
設(shè)-2m-3)(0<m<3),
則由題意得:
?[PM+PN=m-3—^m2-2m-3)+m=—m2+4m=-(m-2)2+4,
*/-l<0,
.??當(dāng)相=2時(shí),H1+7W取得最大值為4,此時(shí)P(2「3);
(3)解:存在,理由如下:
①當(dāng)。點(diǎn)位于尤上方時(shí),在"上取一點(diǎn)。,使得。。=04,連接加并延長(zhǎng)交拋物線與
點(diǎn)Q,
OB=OC=^OD=OA,ZDOB=ZAOC=90°
.^DOB^AAOC(SAS)
:.ZOBD=ZOCA
???ZOBD+ZQBC=ZOBC=45°
/.ZOCA+ZQBC=45°,
止匕時(shí)使得NQBC+/AC。=45°,
';OD=OA=1
.-.£>(0,-1)
???3(3,0),
同上可求直線所得解析式為y=米-1,
y=x?-2尤一3、
聯(lián)立1,解得:或x=3,
三13
②當(dāng)。點(diǎn)位于BC下方時(shí),如圖,作FBLx軸,作于點(diǎn)尸,b與拋物線的交點(diǎn)為E,
連接班,
,當(dāng)尸-3時(shí),爐―2X-3=-3
解得:x=0或x=2,
;.E(2,-3),
:.CE=2,
Z.COB=ZFBO=Z.CFB=90°,
;.OB=CF=3,
:.EF=CF-CE=19
???BF=OC=3,ZBFC=ZCOA=90。,OA=EF=19
.△BFERCOA(SAS),
.\ZEBF=ZAOC,
???CF=BF=3,NBFC=90。,
/.ZCBF=NCBE+NEBF=45°,
/.ZCBE+ZACO=45°,
則E即為。點(diǎn),
2(2-3),
綜上所述:。(2,-3)或°(-^,-2.
【點(diǎn)睛】本題考查了二次函數(shù)的幾何應(yīng)用,坐標(biāo)與圖形,二次函數(shù)的圖香與性質(zhì),求
二次函數(shù)的解析式,一次函數(shù)的解析式,全等三角形的判定與性質(zhì)等知識(shí),分情況求
解是解題關(guān)鍵.
5.⑴6=2
(2)點(diǎn)”的橫坐標(biāo)為|
(3)①,「或T);②-IWnWl-6或也
[—n+1(―1<n<l)
【分析】(1)用待定系數(shù)法求解即可;
(2)設(shè)M⑺,-療+2m+3),作軸于點(diǎn)H,構(gòu)造直角三角形,利用銳角三角函數(shù)或者
相似建立關(guān)于優(yōu)的方程求解即可;
(3)①由二次函數(shù)平移可得出圖象工的解析式為產(chǎn)土-4+4=-1+2心一川+4,從而得到
22
CN=d=\-n+4-3|=|-?+11,再分類討論去絕對(duì)值即可;
②根據(jù)題干條件得出整數(shù)點(diǎn)(。,1),(。,2),CM),再分別兩兩進(jìn)行分類討論,建立二次函數(shù)
不等式即可解決.
【詳解】(1)解:???二次函數(shù),=*+廄+3與x軸交于A(TO),
/.0=—1—Z?+3,
解得:b=2;
(2)Qb=2,
二二次函數(shù)表達(dá)式為:y=-x2+2x+3=-(x-l)2+4,
令y=0,解得X=-1或x=3,令X=。得y=3,
.■.A(-l.O),3(3,0),C(0,3),
設(shè)M(m,-m2+2m+3),
作MHLx軸于點(diǎn)H,如圖,
.-m2+2m+31
m+13
解得w=|或根=一1(舍去),
二四的橫坐標(biāo)為I;
(3)①???將二次函數(shù)沿水平方向平移,
二縱坐標(biāo)不變?yōu)?,
「?圖象L的解析式為>=一0—〃尸+4=—爐+2加—/+4,
陽(yáng)0,-〃2+4),
-,d=CN=\-W2+4-3|=|-^2+1|,
-1
--[-n2+l(-l<n<l)
②由①得畫出大致圖象如下,
-n+1(―1<n<1)
???d隨著"增加而增加,
W〃WO或心1,
AABC中含(0,1),(。,2),(1,1)三個(gè)整點(diǎn)(不含邊界),
當(dāng)U內(nèi)恰有2個(gè)整數(shù)點(diǎn)(0,1),。2)時(shí),
當(dāng)x=O時(shí),%>2,當(dāng)x=l時(shí),九41,
.卜+4>2
"[-(l-n)2<l,
-3\/2<zz<>/2,+-,
―\^2.<〃<1-,
,/—1<77<0或"21,
.■.-1<77<1-V3;
當(dāng)u內(nèi)恰有2個(gè)整數(shù)點(diǎn)(0,1),(1,1)時(shí),
當(dāng)X=O時(shí),廠2,當(dāng)%=1時(shí),為>1,
1<-H2+4<2
(1-〃)2〉I'
.-<〃4->/2,x/zW〃v,\/3,1-A/3<〃<1+y/3,
V2<n<A/3,
-l<n<0或〃21,
V2<n<6?
當(dāng)U內(nèi)恰有2個(gè)整數(shù)點(diǎn)(0,2),(1,1)時(shí),此種情況不存在,舍去.
綜上所述,〃的取值范圍為或&V”〈出.
【點(diǎn)睛】本題主要考查了二次函數(shù)綜合,包括用待定系數(shù)法求二次函數(shù)表達(dá)式及二次
函數(shù)與線段交點(diǎn)的問(wèn)題,也考查了二次函數(shù)與不等式,相似三角形的判定和性質(zhì),熟
練掌握二次函數(shù)的圖象和性質(zhì)以及數(shù)形結(jié)合法是解題關(guān)鍵.
6.(l)y=x2-2x-3;A(-1,0),3(3,0)
(2)”(o,|]或"(。,1)
(3)(2,—3),&一]或(45)
【分析】(1)根據(jù)與y軸交于點(diǎn)C(0,-3),對(duì)稱軸是直線x=l,即可求出函數(shù)解析式;
然后令尸。,解一元二次方程即可得出點(diǎn)45兩點(diǎn)坐標(biāo)
(2)分類討論,當(dāng)ABACSACMB或當(dāng)△朋由相似三角形的性質(zhì)可得對(duì)應(yīng)邊成比
例,再代入數(shù)值進(jìn)行計(jì)算,即可求解;
(3)分三種情況討論:根據(jù)題意,點(diǎn)尸與點(diǎn)5不重合;當(dāng)NAPC=45。時(shí)根據(jù)軸對(duì)稱解答;
當(dāng)/出C=45。時(shí),設(shè)AP交y軸于“點(diǎn),過(guò)點(diǎn)”作印VLAC,證明為AA/W等腰直角三角形,
結(jié)合點(diǎn)A、C坐標(biāo)三角函數(shù)即可確定點(diǎn)H坐標(biāo),利用待定系數(shù)法解得直線AW的解析式,
聯(lián)立直線的解析式與拋物線解析式,求解即可確定點(diǎn)P坐標(biāo);當(dāng)ZACP=45。時(shí),同理
可解.
【詳解】(1),?,拋物線y=/+法+C與y軸交于點(diǎn)c(o「3),對(duì)稱軸是直線X=l,
,當(dāng)x=0時(shí),y=-3,即c=-3,
j-=1>b=-'2,
二拋物線解析式為y=X'2X_3,
,??拋物線與X軸交于A,5兩點(diǎn)(4點(diǎn)在5點(diǎn)左側(cè)),
,當(dāng)"0時(shí),X2-2X-3=0,
解得:%=一1,%=3,
???點(diǎn)A坐標(biāo)為(TO),點(diǎn)5坐標(biāo)為(3,0),;
(2)解:存在,點(diǎn)”的坐標(biāo)為(。,3或(0,1),或理由如下:
A(-I,o),3(3,0),C(0,-3),
AC=Vl2+32=710,AB=4,BC=d學(xué)+*=30,
如下圖,當(dāng)時(shí),
9
CM=—,
2
93
:.OM=CM-OC=——3=-,
22
當(dāng)△"CSAQWB時(shí),如圖:
:.CM=4,
:.OM=CM-OC=1,
則M(O,1),
綜合:”(oQ或M(O,I);
(3)根據(jù)題意,點(diǎn)尸與點(diǎn)5不重合;如圖
當(dāng)NAPC=45。時(shí),點(diǎn)尸與。關(guān)于拋物線對(duì)稱軸對(duì)稱,
???3(3,0),C(0,-3),
OB=3,OC=3,BC=132+3,=3A/2,
且ZABC=45。,
結(jié)合二次函數(shù)的對(duì)稱性,
:.ZBAP=45°,
CP//AB,
二點(diǎn)尸縱坐標(biāo)為-3,
拋物線的對(duì)稱軸為x=l,
???點(diǎn)尸橫坐標(biāo)為2,
???尸的坐標(biāo)為(2,-3);
當(dāng)NPAC=45。時(shí),如下圖,
設(shè)AP交y軸于“點(diǎn),過(guò)點(diǎn)H作“N,AC于點(diǎn),
?「NA4c=45。,
ZNHA=90°一APAC=45°=APAC,
:.HN=NA,
vA(-l,0),C(0,-3),
OA=1,OC=3,
“八NHOA1
..tan/^ACO-------=一.
CNOC3
設(shè)HN=NA=t,貝=AHft,
AC=t+3t=VTo,
解得:u手,
AH=亞=旦,
2
:.OH=^AH2-O^=-,
2
設(shè)直線47的解析式為y=G+4(>。),將點(diǎn)A(T0),“0,-j代入,可得,
0=—k]+b、
%」
12
kt=--
解得,;
b、=——
12
???直線AH的解析式為1J,
聯(lián)立直線AH的解析式y(tǒng)=1xV與拋物線解析式y(tǒng)=42-3,得
’11
V=——X——
<22
y=x2-2x-3
解得:x=l,(舍去)x=|>
c尸交無(wú)軸于點(diǎn)T,過(guò)點(diǎn)T作正,3c于點(diǎn)K,
?.?5(3,0),C(0,-3),
:.OB=OC=3,
ZOCB=ZCBT」x90。=45。,
2
???ZACP=ZOCB=45°即AACO+AOCP=/OCP+/PCB,
:.ZACO=ZPCB,
tanNBCP=—=tanZACO=-,
CK3
ZKBT=45°,
:"KTB=90°-/KBT=45°=ZKBT,
:.KB=KT,
設(shè)KT=KB=t,貝[jCK=3/,BT=M,
BC=3t+t=3^2,
二心。],
設(shè)直線CT的解析式為產(chǎn)口+由他w。),
將點(diǎn)C(0,-3),T停。)代入可得,
—3=b2
<3
?
Q=-k2+b2
解得二
,直線CT的解析式為v=2》-3,
聯(lián)立直線CT的解析式丫=2》-3與拋物線y=/-2x-3解析式,可得,
Jy=2x—3
\y=x2—2x—3
解得x=。(舍去)或x=4,
???點(diǎn)尸(4,5).
綜上所述,點(diǎn)尸坐標(biāo)為(2,-3),或(4,5).
【點(diǎn)睛】本題是二次函數(shù)綜合應(yīng)用,主要考查了坐標(biāo)與圖形、待定系數(shù)法求一次函數(shù)
解析式、解直角三角形、等腰直角三角形的判定與性質(zhì)、勾股定理、相似三角形的性
質(zhì)等知識(shí),綜合性強(qiáng),難度較大,解題關(guān)鍵是運(yùn)用數(shù)形結(jié)合和分類討論的思想分析問(wèn)
題.
7.(1)y=x2-x-2
(2)m=1或3
【分析】此題考查了二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求函數(shù)解析式、等腰直角三
角形的性質(zhì)等知識(shí),數(shù)形結(jié)合和分類討論是解題的關(guān)鍵.
(1)利用待定系數(shù)法求出函數(shù)解析式即可;
(2)分兩種情況畫出圖形,根據(jù)等腰直角三角形的性質(zhì)列出方程,解方程即可得到答
案.
【詳解】(1)解:???拋物線產(chǎn)加+樂(lè)-2(〃>。)與%軸交于點(diǎn)4(-1,。),3(2,0),
a-b-2=0
4〃+2。-2=0
解得門
???拋物線的函數(shù)表達(dá)式為-7-2.
(2)當(dāng)點(diǎn)尸在x軸下方時(shí),如圖,過(guò)點(diǎn)尸作PDU軸于點(diǎn)。,則點(diǎn)。的坐標(biāo)為(叫0),
.?.△4DP是等腰直角三角形,AD=PD,
m+l=_(m2_機(jī)_2),
解得犯=-1,瓶2=1
其中肛=-1不合題意,故加=1
當(dāng)點(diǎn)尸在X軸上方時(shí),如圖,過(guò)點(diǎn)尸作PEA軸于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(加⑼,
...NBAP=45。,
△AEP是等腰直角三角形,AE=PE,
BPm+l=m2—m—2,
解得見=-l,m2=3
其中利=-1不合題意,故m=3
綜上可知,機(jī)=1或根=3.
8.(1)(2,-1)
Q
(3)(2,2)或(2,—2)
【分析】(1)要求拋物線的表達(dá)式,先求出B。兩點(diǎn)的坐標(biāo),再代入拋物線的表達(dá)式
中,用待定系數(shù)法求出拋物線解析式,化為頂點(diǎn)式即可解答;
(2)QG的周長(zhǎng)最大值即求出MN最大值即可,設(shè)出點(diǎn)尸的坐標(biāo),將線段的長(zhǎng)用含點(diǎn)
方的式子表示出來(lái),再利用二次函數(shù)的最大值求出MN的最大值,即可求解;
(3)設(shè)對(duì)稱軸與入軸的交點(diǎn)為點(diǎn)”,求點(diǎn)尸的坐標(biāo),要得到尸”的值,作AECC交
于點(diǎn)E,證要得到AE的值,需證△EBASAOBC,從而求出點(diǎn)尸的坐標(biāo).
【詳解】(I)解:當(dāng)x=。時(shí),y=-尤+3=3,即點(diǎn)C(0,3);
當(dāng)尸0時(shí),0=f+3,解得:x=3,故點(diǎn)0(3,0),
2
將點(diǎn)B(3,0),C(0,3)分別代入y=x+bx+c中,
得仁2°,解得
「?拋物線的表達(dá)式為y=/-4x+3;
y=(x-2)2-l,
「?拋物線的頂點(diǎn)坐標(biāo)為僅T)
(2)如解圖①,設(shè)M&T+3),則N9產(chǎn)-4~3),
.?.當(dāng)時(shí),MN.此時(shí)以線段MN為直徑作0G,OG的周長(zhǎng)最大,最大值為:萬(wàn)
(3)存在.
由y=d_4x+3=(x_2y-1可得點(diǎn)D的坐標(biāo)為(2,-1),點(diǎn)A的坐標(biāo)為(1,。),
由OC=C?=3可知△O3C是等腰直角三角形,AC=j3?+12=可,
如解圖②,過(guò)點(diǎn)A作AECC,垂足為點(diǎn)E,設(shè)對(duì)稱軸與入軸的交點(diǎn)為點(diǎn)H,
???NEBA=ZOBC=45°,ZBEA=ZBOC=90°,
.,.△EBA^AOBC,
BA_BE_AE叩2_BE_AE
BC-BO-CO?lJ3A/233
/.AE=BE=y/2,
CE=V10-2=2A/2,
???ZAPD=ZACB,ZAEC=ZAHP=90°,
二.△AECSAAHP,
CEAE即人治j,
PH~AH
...點(diǎn)尸在對(duì)稱軸上,
I.點(diǎn)PM的坐標(biāo)為(2,2)或(2,一2).
【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、求二次函數(shù)解析式、相似三角形
勾股定理等知識(shí)點(diǎn),解本題的關(guān)鍵在明確題意,利用構(gòu)造相似三角形求線段長(zhǎng)和利用
二次函數(shù)性質(zhì)和數(shù)形結(jié)合思想解答問(wèn)題.
9.⑴y=x-4;A(-3,0)
(2)1
(3)存在?點(diǎn)G的坐標(biāo)為1-7,或(1,-4);
【分析】本題考查了二次函數(shù)綜合題,待定系數(shù)法求一次函數(shù)的解析式、二次函數(shù)的
圖象和性質(zhì)、解一元二次方程,掌握相關(guān)性質(zhì)是解題的關(guān)鍵.
(1)先求得4(-3,0),川4,0),C(0,T),再利用待定系數(shù)法求解即可;
(2)用加表示出DE和。尸,根據(jù)斯=?!?:。尸,列方程,解之即可得解;
(3)分兩種情況討論,點(diǎn)G在x軸下方和上方時(shí),分別求解即可.
【詳解】(1)解:令尸。,則?!?—XT,
解得>-3或x=4;
令x=0,則y=-4,解得x=-3或無(wú)=4;
A(-3,0),3(4,0),C(0,-4),
設(shè)直線BC的函數(shù)表達(dá)式為k質(zhì)-4,
將8(4,0)代入得。=4人-4,
解得左=1,
/?直線BC的函數(shù)表達(dá)式為V=x-4;
(2)解:?點(diǎn)。(砌,且0<?。?,
,點(diǎn)E(〃擊加一4),尸(加,;相2,
.1,1
??DE=4—m,DF=-m+—m+4,
33
由題意得匹=?=
...—jm2+-^m+4=2(4—m),
整理得病-7nl+12=0,
解得加=3或根=4(舍去),
I.EF=DE=4—3=1;
(3)解:點(diǎn)G在x軸下方時(shí),如圖,
CG//AB,
???點(diǎn)G的縱坐標(biāo)為Y,
解方程?!?一3一,,
得x=0或x=l,
此時(shí)點(diǎn)G的坐標(biāo)為(1,-4);
,/NABG=/CAB,
BG//AC,
同理求得直線AC的函數(shù)表達(dá)式為>=-不-4,
?e?設(shè)直線BG的函數(shù)表達(dá)式為y=-gx+6,
將3(4,0)代入得0=-乎4+6,
解得6=g,
J直線3G的函數(shù)表達(dá)式為y=-x+g;
聯(lián)立gx2Tx_4=_gx+g,
整理得/+3%-28=0,
解得x=4或x=-7,
此時(shí)點(diǎn)G的坐標(biāo)為,7,4];
綜上,點(diǎn)G的坐標(biāo)為,7,或(1,一4);
10.(1川=-#+京+2
(2)ascD面積的最大值是4
(3)點(diǎn)D的坐標(biāo)為(2,3)或(g,樣]
【分析】(1)由待定系數(shù)法即可求解;
(2)先直線2C的解析式,設(shè)點(diǎn)。卜彳布+:加+2),£卜-;機(jī)+2),根據(jù)三角形的面積公
式列出函數(shù)解析式求解即可;
(3)分兩種情況求解:當(dāng)點(diǎn)。在%軸上方時(shí)和當(dāng)點(diǎn)。在入軸下方時(shí).
【詳解】(1)解:???拋物線y=-+1+c與%軸交于點(diǎn)A和點(diǎn)以4,0),與y軸交于點(diǎn)C(0,2),
.[y=16a+6+c
[2=c
,_1
解得”一5
c=2
???求拋物線的解析式為+1+2;
(2)如答圖1,過(guò)點(diǎn)。做江U軸,交線段BC于點(diǎn)E,垂足為點(diǎn)尸,
圖1
當(dāng)X=O時(shí),"0,則C(0,2),
?直線BC經(jīng)過(guò)點(diǎn)3(4,0),C(0,2),
設(shè)為c=履+°
14左+/?=0
[b=2
L__l
解得:2
0=2
,直線BC的解析式為:y=-:x+2,
設(shè),點(diǎn)£>]加,一(根2+|根+2),E^n-Lm+2^
.1
??DE=——m29+2m,
2
?*s=—-DF-OFS=—?DEBF
?°ACDE2,Q^BDE2Dr,
:.S.BCD=S.CDE+S/.\BtiiDJKE=2-DEOF+-2DEBF=-2DEOB7,
?q—1/12c「2+4m=-(m-2)2+4
??OBCD-—x——m+2mx4=-m
A2I2)
*/-l>0,
當(dāng)小=2,ABC。面積最大,ABCD面積的最大值是4.
(3)如答圖2,當(dāng)點(diǎn)。在直線3C的上方的拋物線上時(shí),
圖2
ZDCB=ZABC,
CD//AB,
點(diǎn)C,。的縱坐標(biāo)相等,即點(diǎn)。的縱坐標(biāo)為2,
當(dāng)>=2時(shí),則-;x2+gx+2=2,
解得,占=。(舍去)馬=3,
,。(3,2),
如答圖3,當(dāng)點(diǎn)。在直線8C的下方的拋物線上時(shí),
設(shè)。c交%軸于點(diǎn)G,
*/ZDCB=ZABC,
GC=GB.
設(shè)GB=GC=n,
/.OG=OB-GB=4-n,
在RtACOG中,
222
*/OC+OG=CG9
?*.22+(4-〃)2=/,
解得:w=g,
設(shè)直線c。的解析式為尸爪+6,
.—k+b=O
..2,
b=2
.z
k=__
解得:一?I,
b=2
?_4「
??y=一§兄+2,
f4“
.「=丁+2
,,13
2-x+2
-17
X=——
解得::二,(舍去)L
綜上所述,點(diǎn)。的坐標(biāo)為(2,3)或百卷).
【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)與坐標(biāo)軸的交點(diǎn),平行線的
判定,勾股定理,等腰三角形的判定,二次函數(shù)與幾何綜合,數(shù)形結(jié)合是解題的關(guān)鍵.
11.(1)^=|
(2)-1或-8
(3)機(jī)=;或根=;.
【分析】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求解析式,頂點(diǎn)式,解一元二次方
程,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.
(1)待定系數(shù)法求解析式并化為頂點(diǎn)式,求得頂點(diǎn)坐標(biāo),進(jìn)而根據(jù)點(diǎn)。的橫坐標(biāo)為癡,
即可求解;
(2)分4Q//X軸時(shí),”//X軸時(shí)分別根據(jù)拋物線的對(duì)稱性求得Q的橫坐標(biāo)與P的橫坐標(biāo),
進(jìn)而代入拋物線解析式,求得縱坐標(biāo),即可求解;
(4)根據(jù)根的取值范圍分四種情況討論,分別求得配3根據(jù)a-4=根建立方程,解方
程即可求解.
【詳解】(1)解::拋物線y=Y-2x+c經(jīng)過(guò)點(diǎn)4(0,-1).
c=—l
???拋物線解析式為y=f-2x7;
j^=x2—2x—1=(x—I)"—2,
???頂點(diǎn)坐標(biāo)為(1,-2),對(duì)稱軸為直線x=l
丁點(diǎn)。與此拋物線的頂點(diǎn)重合,點(diǎn)Q的橫坐標(biāo)為2m
2m=1,
解得:根=g;
(2)①AQ〃x軸時(shí),點(diǎn)A。關(guān)于對(duì)稱軸x=i對(duì)稱,
xQ=2m=2,
???點(diǎn)尸的橫坐標(biāo)為1,點(diǎn)。的橫坐標(biāo)為2,
當(dāng)尤=1時(shí),y=l2-2-1=-2,
當(dāng)x=2時(shí),y=2z-2x2-l=-l,
P(l,-2),Q(2,-1)
???點(diǎn)尸與點(diǎn)。的縱坐標(biāo)的差為-2+l=-1;
②當(dāng)AP〃彳軸時(shí),則AP關(guān)于直線x=l對(duì)稱,
?\xp=m=29xQ=2m=4
.?.點(diǎn)尸的橫坐標(biāo)為2,點(diǎn)。的橫坐標(biāo)為4,
當(dāng)x=2時(shí),y=22-2x2-l=-l,
當(dāng)尤=4時(shí),y=42-2x4-l=7,
P(2,-l),Q(4,7)
???點(diǎn)尸與點(diǎn)。的縱坐標(biāo)的差為T-7=-8;
綜上所述,點(diǎn)尸與點(diǎn)。的縱坐標(biāo)的差為-1或-8;
(3)①如圖所示,當(dāng)P,。都在對(duì)稱軸》=1的左側(cè)時(shí),
貝!
.?.0n<m<—1
2
—2m—1),2^2m,(2m)2-2x2m-lj即Q(2m,4m2-4m-l
4=y-y=-l-(m2-2m-l2
AP=-m+2m;
h4m2—4m—=-4m2+4m
2=yA-yQ=-^-
4—4=(-4機(jī)2+4根)—(一m2_|_2mj=m
解得:機(jī)=;或加=0(舍去);
②當(dāng)尸,Q在對(duì)稱軸兩側(cè)或其中一點(diǎn)在對(duì)稱軸上時(shí),
2
則4=-2m-l)=-m+2m,%%一Y頂點(diǎn)=-1-(-2)=1,
2
1121kl=1—m+2mj=m,
解得:叫守(舍去)或1(舍去);
③當(dāng)點(diǎn)尸在X=1的右側(cè)且在直線尸-1下方時(shí),即1<機(jī)<2,
%=%一>頂點(diǎn)=T一(―2)=1,4=%一y頂點(diǎn)=(4療一4〃z-1)-(-2)=4m2-4m+l
解得:m=;或加=。(舍去);
④當(dāng)P在直線>=T上或上方時(shí),即加22,
4=力一乃贓=(加2—2m—1)—(—2)=m2—2m+l,
2
均——y期占=(4根2—4m—1^—(—2)=4m—4m+l,
二.色—%=4m2—4m+l-(^m2—2m+l)=m
解得:m=1(舍去)或〃2=0(舍去)
綜上所述,"J或根=:.
【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求解析式,頂點(diǎn)式,熟練掌握二次
函數(shù)的性質(zhì)是解題的關(guān)鍵.
12.⑴>=*+2》+3
(2)”的值為-1或-2
⑶41T或03
【分析】
(1)把A(T,0),3(3,0),C(0,3)代入產(chǎn)加+匕尤+“求出。、b、C的值,即可得出函數(shù)解析
式;
(2)先得出將二次函數(shù)尸r2+2x+3圖像X軸上方的部分關(guān)于工軸翻折后的函數(shù)解析式
為y=f—2x-3(-1<%<3),然后進(jìn)行分類討論:①當(dāng)y=f+”經(jīng)過(guò)點(diǎn)A時(shí),②當(dāng)y=-x+”不
經(jīng)過(guò)點(diǎn)A時(shí),即可解答;
(3)過(guò)點(diǎn)尸作總?cè)溯S于點(diǎn)石,推出/0?O=/POE,由圖可知,點(diǎn)。在點(diǎn)5左邊,進(jìn)行
分類討論:①當(dāng)點(diǎn)。在y=--2x-3上時(shí),連接8£>,過(guò)點(diǎn)£>做%軸的垂線,垂足為點(diǎn)尸,
設(shè)。(療一2f-3),則叱=d+2,+3,跖=3一,根據(jù)tanZDBO=蕓=1,歹咄方程求出才的值即可;
Dr2
②當(dāng)點(diǎn)。在y=-#+2x+3上時(shí),同理可得tan/£>20=*=;,即可解答.
DrZ
【詳解】(1)解:把A(TO),3(3,0),C(0,3)代入y="2+-C得:
O=a-b+c
<0=9〃+3b+c,
3=c
a=-1
解得:,6=2,
c=3
拋物線的解析式為y=-/+2x+3;
(2)解:將二次函數(shù)y=-d+2x+3圖像%軸上方的部分關(guān)于入軸翻折后的函數(shù)解析式為
y=f—2x-3(-1?xK3),
①當(dāng)經(jīng)過(guò)點(diǎn)A時(shí),
把A(-1,O)代入y=-x+〃得:0=1+〃,
解得:〃=T,
/.y=-x-i,
聯(lián)立y=-x-l和%-/+2尤+3得:
(y=-x-l
[y=_尤2+2x+3'
則/_3%一4=0,
解得:X,=4,X2=-1,,
y=-x-l與y=+2x+3相交于(-1,0),(4,-5),
聯(lián)立y=-x-l和y=/-2x-3得:
fy=-X-]
=x2—2x—3,
則x2—x—2=0,
解得:玉=2,%=T,
產(chǎn)-x-l與尸2-2》-3相交于(2,-3),(-1,。),
???當(dāng)〃=-1時(shí),直線y=f+"與該新圖象上恰好有三個(gè)公共點(diǎn);
②當(dāng)y=-x+a不經(jīng)過(guò)點(diǎn)A時(shí),
由圖可知,將y=f向下平移八個(gè)單位長(zhǎng)度時(shí),直線y=f+"與該新圖象上恰好有三個(gè)公
共點(diǎn)
.?.'=-工+〃與尸/-2尤-3有且只有一個(gè)交點(diǎn),
y=—x+n
聯(lián)立得:
y=x2-2x—3'
則x2-x-(3+n)=0,
△=/-4改=1-4(3+止0,
解得:〃=-?
綜上:”的值為T或-,;
(3)解:過(guò)點(diǎn)尸作PED軸于點(diǎn)E,
?ZDBO+ZPOB=90°,ZPOE+ZPOB=90°,
ZDBO=ZPOE,
由圖可知,點(diǎn)。在點(diǎn)5左邊,
①當(dāng)點(diǎn)。在y=--2x-3上時(shí),連接8£),過(guò)點(diǎn)。做入軸的垂線,垂足為點(diǎn)尸,
設(shè)。2-3),貝尸=一〃+2/+3,8尸=37,
???點(diǎn)/坐標(biāo)。,-2),
/.PE=LOE=2,
/.tanZPOE=-
2
NDBO=NPOE,
?f/rmcDF1日n—/+2,+31
??tanZDBO=——=一,gJ-------------=-,
BF213T2
解得:也=3(與點(diǎn)5重合,舍去),
②當(dāng)點(diǎn)。在y=-f+2x+3上時(shí),
D(/,-產(chǎn)+2/+3),貝UDF=t2—2/—3,BF=3—%,
同理可得:tan/%O=M=;,即="=
or25—t2
解得:。=二區(qū)=3(與點(diǎn)5重合,舍去
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 18242-2025彈性體/塑性體改性瀝青防水卷材
- 2026年杭州科技職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)帶答案詳解
- 2026年寧夏工業(yè)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)及答案詳解一套
- 2026年山西華澳商貿(mào)職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)及完整答案詳解1套
- 2026年黑龍江省鶴崗市單招職業(yè)傾向性測(cè)試題庫(kù)及答案詳解一套
- 2026年西安職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)及答案詳解一套
- 2026年廣東碧桂園職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及參考答案詳解
- 2026年大理農(nóng)林職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及完整答案詳解1套
- 2026年安徽黃梅戲藝術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)含答案詳解
- 2026年山東經(jīng)貿(mào)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)帶答案詳解
- 醫(yī)院設(shè)計(jì)培訓(xùn)課件
- 如何調(diào)解婚姻家庭糾紛講座
- 重大活動(dòng)網(wǎng)絡(luò)安全保障方案
- 含酚污水處理操作規(guī)程
- 江蘇省蘇州市吳中學(xué)、吳江、相城區(qū)2024-2025學(xué)年化學(xué)九上期末質(zhì)量檢測(cè)模擬試題含解析
- 建筑公司發(fā)展策劃方案
- 教育培訓(xùn)銷售管理制度及主要工作流程
- 機(jī)械進(jìn)出場(chǎng)管理制度
- 2025年春季學(xué)期國(guó)開電大專本科《計(jì)算機(jī)應(yīng)用基礎(chǔ)》平臺(tái)在線形考任務(wù)試題及答案+2025年國(guó)家開放大學(xué)國(guó)開電大《馬克思主義基本原理》專題測(cè)試
- 瓷磚考試題及答案
- 2025房屋買賣合同公證書范文
評(píng)論
0/150
提交評(píng)論