2024年天津市東麗區(qū)名校數(shù)學九上期末質量檢測模擬試題含解析_第1頁
2024年天津市東麗區(qū)名校數(shù)學九上期末質量檢測模擬試題含解析_第2頁
2024年天津市東麗區(qū)名校數(shù)學九上期末質量檢測模擬試題含解析_第3頁
2024年天津市東麗區(qū)名校數(shù)學九上期末質量檢測模擬試題含解析_第4頁
2024年天津市東麗區(qū)名校數(shù)學九上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個盒子裝有紅、黃、白球分別為2、3、5個,這些球除顏色外都相同,從袋中任抽一個球,則抽到黃球的概率是()A. B. C. D.2.如圖,正六邊形的邊長是1cm,則線段AB和CD之間的距離為()A.2cm B.cm C.cm D.1cm3.在中,,若,則的值為()A. B. C. D.4.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.85.拋物線y=x2﹣2x+3的頂點坐標是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)6.如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F(xiàn)是CD上的一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則下列結論中:①;②;③tan∠EAF=;④正確的是()A.①②③ B.①②④ C.①③④ D.②③④7.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側),其頂點P在線段MN上移動.若點M、N的坐標分別為(-1,-1)、(2,-1),點B的橫坐標的最大值為3,則點A的橫坐標的最小值為()A.-3 B.-2.5 C.-2 D.-1.58.某魚塘里養(yǎng)了100條鯉魚、若干條草魚和50條羅非魚,通過多次捕撈實驗后發(fā)現(xiàn),捕撈到草魚的頻率穩(wěn)定在0.5左右,可估計該魚塘中草魚的數(shù)量為()A.150 B.100 C.50 D.2009.若是方程的根,則的值為()A.2022 B.2020 C.2018 D.201610.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(

)A.種植10棵幼樹,結果一定是“有9棵幼樹成活”B.種植100棵幼樹,結果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.911.如圖,已知若的面積為,則的面積為()A. B. C. D.12.下面是由幾個小正方體搭成的幾何體,則這個幾何體的左視圖為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點在雙曲線上,且軸于,若的面積為,則的值為__________.14.如圖,正三角形AFG與正五邊形ABCDE內接于⊙O,若⊙O的半徑為3,則的長為______________.15.在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是____________.16.將二次函數(shù)y=x2﹣1的圖象向上平移3個單位長度,得到的圖象所對應的函數(shù)表達式是_____.17.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(如圖).把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=______.18.如圖,直線l經(jīng)過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.三、解答題(共78分)19.(8分)“每天鍛煉一小時,健康生活一輩子”,學校準備從小明和小亮2人中隨機選拔一人當“陽光大課間”領操員,體育老師設計的游戲規(guī)則是:將四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖1,撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明兩人各抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時,小亮當選;否則小明當選.(1)請用樹狀圖或列表法求出所有可能的結果;(2)請問這個游戲規(guī)則公平嗎?并說明理由.20.(8分)某校舉行秋季運動會,甲、乙兩人報名參加100m比賽,預賽分A、B、C三組進行,運動員通過抽簽決定分組.(1)甲分到A組的概率為;(2)求甲、乙恰好分到同一組的概率.21.(8分)如圖,已知中,以為直徑的⊙交于,交于,,求的度數(shù).22.(10分)(1)計算:.(2)用適當方法解方程:(3)用配方法解方程:23.(10分)如圖,△ABC中,點E在BC邊上,AE=AB,將線段AC繞A點逆時針旋轉到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點G.求證:EF=BC.24.(10分)如圖,△ABC中,AB=8,AC=6.(1)請用尺規(guī)作圖的方法在AB上找點D,使得△ACD∽△ABC(保留作圖痕跡,不寫作法)(2)在(1)的條件下,求AD的長25.(12分)如圖,矩形ABCD的對角線AC、BD交于點O,∠AOD=60°,AB=,AE⊥BD于點E,求OE的長.26.已知二次函數(shù)y=x2-2x-1.(1)求圖象的對稱軸、頂點坐標;(2)當x為何值時,y隨x的增大而增大?

參考答案一、選擇題(每題4分,共48分)1、D【分析】用黃球的個數(shù)除以球的總數(shù)即為摸到黃球的概率.【詳解】∵布袋中裝有紅、黃、白球分別為2、3、5個,共10個球,從袋中任意摸出一個球共有10種結果,其中出現(xiàn)黃球的情況有3種可能,∴得到黃球的概率是:.故選:D.本題考查隨機事件概率的求法:如果一個事件有m種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)n種結果,那么事件A的概率P(A)=.2、B【分析】連接AC,過E作EF⊥AC于F,根據(jù)正六邊形的特點求出∠AEC的度數(shù),再由等腰三角形的性質求出∠EAF的度數(shù),由特殊角的三角函數(shù)值求出AF的長,進而可求出AC的長.【詳解】如圖,連接AC,過E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多邊形為正六邊形,∴∠AEC==120°,∴∠AEF==60°,∴∠EAF=30°,∴AF=AE×cos30°=1×=,∴AC=,故選:B.本題考查了正多邊形的應用,等腰三角形的性質和銳角三角函數(shù),掌握知識點是解題關鍵.3、C【分析】根據(jù)特殊角的三角函數(shù)值求出∠B,再求∠A,即可求解.【詳解】在中,,若,則∠B=30°故∠A=60°,所以sinA=故選:C本題考查的是三角函數(shù),掌握特殊角的三角函數(shù)值是關鍵.4、B【分析】根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵5、C【分析】把拋物線解析式化為頂點式可求得答案.【詳解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴頂點坐標為(1,2),故選:C.本題考查了拋物線的頂點坐標的求解,解題的關鍵是熟悉配方法.6、A【解析】利用正方形的性質,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再證明△ABM∽△FDM,即可解答①;根據(jù)題意可知:AF=DE=AE=,再根據(jù)三角函數(shù)即可得出③;作PH⊥AN于H.利用平行線的性質求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【詳解】解:∵正方形ABCD的邊長為2,點E是BC的中點,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF與△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正確;根據(jù)題意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正確,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正確,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN與△DPE不相似,故④錯誤.故選:A.此題考查三角函數(shù),相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質難度較大,解題關鍵在于綜合掌握各性質7、C【分析】根據(jù)頂點P在線段MN上移動,又知點M、N的坐標分別為(-1,-2)、(1,-2),分別求出對稱軸過點M和N時的情況,即可判斷出A點坐標的最小值.【詳解】解:根據(jù)題意知,點B的橫坐標的最大值為3,當對稱軸過N點時,點B的橫坐標最大,∴此時的A點坐標為(1,0),當對稱軸過M點時,點A的橫坐標最小,此時的B點坐標為(0,0),∴此時A點的坐標最小為(-2,0),∴點A的橫坐標的最小值為-2,故選:C.本題主要考查二次函數(shù)的綜合題的知識點,解答本題的關鍵是熟練掌握二次函數(shù)的圖象對稱軸的特點,此題難度一般.8、A【分析】根據(jù)大量重復試驗中的頻率估計出概率,利用概率公式求得草魚的數(shù)量即可.【詳解】∵通過多次捕撈實驗后發(fā)現(xiàn),捕撈到草魚的頻率穩(wěn)定在0.5左右,∴捕撈到草魚的概率約為0.5,設有草魚x條,根據(jù)題意得:=0.5,解得:x=150,故選:A.本題考查用樣本估計總體,解題的關鍵是明確題意,由草魚出現(xiàn)的頻率可以計算出魚的數(shù)量.9、B【分析】根據(jù)一元二次方程的解的定義,將x=m代入已知方程,即可求得(m2+m)的值,然后將其整體代入所求的代數(shù)式進行求值即可.【詳解】依題意得:m2+m-1=0,

則m2+m=1,

所以2m2+2m+2018=2(m2+m)+2018=2×1+2018=1.

故選:B.此題考查一元二次方程的解.解題關鍵在于能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.10、D【解析】A.種植10棵幼樹,結果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.11、A【分析】根據(jù)相似三角形的性質得出,代入求出即可.【詳解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面積為9,∴,∴S△ADE=1,故選:A.本題考查了相似三角形的性質定理,能熟記相似三角形的面積比等于相似比的平方是解此題的關鍵.12、D【分析】根據(jù)幾何體的三視圖的定義以及性質進行判斷即可.【詳解】根據(jù)幾何體的左視圖的定義以及性質得,這個幾何體的左視圖為故答案為:D.本題考查了幾何體的三視圖,掌握幾何體三視圖的性質是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】設點A坐標為(x,y),由反比例函數(shù)的幾何意義得,根據(jù)的面積為,即可求出k的值.【詳解】解:設點A的坐標為:(x,y),∴,∴,∴,∵反比例函數(shù)經(jīng)過第二、四象限,則,∴故答案為:.本題考查了反比例函數(shù)的性質,以及反比例函數(shù)的幾何意義,解題的關鍵是熟練掌握反比例函數(shù)的幾何意義進行解題.14、【分析】連接OB,OF,根據(jù)正五邊形和正三角形的性質求出∠BAF=24°,再由圓周角定理得∠BOF=48°,最后由弧長公式求出的長.【詳解】解:連接OB,OF,如圖,根據(jù)正五邊形、正三角形和圓是軸對稱圖形可知∠BAF=∠EAG,∵△AFG是等邊三角形,∴∠FAG=60°,∵五邊形ABCDE是正五邊形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半徑為3,∴的弧長為:故答案為:本題主要考查正多邊形與圓、弧長公式等知識,得出圓心角度數(shù)是解題關鍵.15、(-3,4)【詳解】在平面直角坐標系中,點(3,-4)關于原點對稱的點的坐標是(-3,4).故答案為(-3,4).本題考查關于原點對稱的點的坐標,兩個點關于原點對稱時,它們的坐標符號相反.16、y=x1+1【解析】分析:先確定二次函數(shù)y=x1﹣1的頂點坐標為(0,﹣1),再根據(jù)點平移的規(guī)律得到點(0,﹣1)平移后所得對應點的坐標為(0,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.詳解:二次函數(shù)y=x1﹣1的頂點坐標為(0,﹣1),把點(0,﹣1)向上平移3個單位長度所得對應點的坐標為(0,1),所以平移后的拋物線解析式為y=x1+1.故答案為y=x1+1.點睛:本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.17、80°或120°【分析】本題可以圖形的旋轉問題轉化為點B繞D點逆時針旋轉的問題,故可以D點為圓心,DB長為半徑畫弧,第一次與原三角形交于斜邊AB上的一點B′,交直角邊AC于B″,此時DB′=DB,DB″=DB=2CD,由等腰三角形的性質求旋轉角∠BDB′的度數(shù),在Rt△B″CD中,解直角三角形求∠CDB″,可得旋轉角∠BDB″的度數(shù).【詳解】解:如圖,在線段AB取一點B′,使DB=DB′,在線段AC取一點B″,使DB=DB″,∴①旋轉角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋轉角∠BDB″=180°-∠CDB″=120°.故答案為80°或120°.本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.運用含30度的直角三角形三邊的關系也是解決問題的關鍵.18、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答題(共78分)19、(1)見解析;(2)此游戲規(guī)則不公平,理由見解析【分析】(1)利用樹狀圖展示所有有12種等可能的結果;(2)兩張牌面數(shù)字之和為奇數(shù)的有8種情況,再根據(jù)概率公式求出P(小亮獲勝)和P(小明獲勝),然后通過比較兩概率的大小判斷游戲的公平性.【詳解】(1)畫樹狀圖如下:(2)此游戲規(guī)則不公平.理由如下:由樹狀圖知,共有12種等可能的結果,其中兩張牌面數(shù)字之和為奇數(shù)的有8種情況,所以P(小亮獲勝)==;P(小明獲勝)=1﹣=,因為>,所以這個游戲規(guī)則不公平.此題考查列樹狀圖求概率,(1)中注意事件是屬于不放回事件,故第一次牌面有4種,第二次牌面有3種,(2)中計算概率即可確定事件是否公平.20、(1);(2)【分析】(1)直接利用概率公式求出甲分到A組的概率;(2)將所有情況列出,找出滿足條件:甲、乙恰好分到同一組的情況有幾種,計算出概率.【詳解】解:(1)(2)甲乙兩人抽簽分組所有可能出現(xiàn)的結果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9種,它們出現(xiàn)的可能性相同.所有的結果中,滿足“甲乙分到同一組”(記為事件A)的結果有3種,所以P(A)=.此題主要考查了樹狀圖法求概率,正確利用列舉出所有可能并熟練掌握概率公式是解題關鍵.21、40°【分析】連接AE,判斷出AB=AC,根據(jù)∠B=∠C=70°求出∠BAC=40°,再根據(jù)同弧所對的圓周角等于圓心角的一半,求出∠DOE的度數(shù).【詳解】解:連接∵是⊙的直徑.∴,∴,∵,∴∴∴,∴.本題考查了等腰三角形的性質和圓周角定理,把圓周角轉化為圓心角是解題的關鍵.22、(1)3;(2)x1=,x2=;(3)x1=1+,x2=1?.【解析】(1)先根據(jù)特殊角的三角函數(shù)值、二次根式的性質、零指數(shù)冪和絕對值的意義逐項化簡,再合并同類二次根式或同類項即可;(2)用直接開平方法求解即可;(3)先把-3移項,再把二次項系數(shù)化為1,兩邊都加1,把左邊寫成完全平方的形式,兩邊同時開平方即可.【詳解】解:(1)原式=4×-2+1+2=3;(2)(2x-5)2=,2x-5=±,所以x1=,x2=;(3)解:∵2x2-4x-3=0,∴2x2-4x=3,∴x2?2x=,∴x2?2x+1=+1,∴(x?1)2=,∴x-1=±,∴x1=1+,x2=1?.本題考查了實數(shù)的混合運算,一元二次方程的解法,熟練掌握二次方程的解法是解答本題的關鍵.23、見解析【分析】由旋轉前

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論