2024-2025學(xué)年山東省青島七中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024-2025學(xué)年山東省青島七中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024-2025學(xué)年山東省青島七中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024-2025學(xué)年山東省青島七中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024-2025學(xué)年山東省青島七中學(xué)九年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長的最大值與最小值的和是()A.6B.C.9D.2.如圖,在中,點(diǎn)在邊上,且,,過點(diǎn)作,交邊于點(diǎn),將沿著折疊,得,與邊分別交于點(diǎn).若的面積為,則四邊形的面積是()A. B. C. D.3.二次函數(shù)的圖象如圖,則一次函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限4.如圖,⊙O是△ABC的外接圓,已知AD平分∠BAC交⊙O于點(diǎn)D,AD=5,BD=2,則DE的長為()A. B. C. D.5.如圖,已知⊙O的半徑為4,四邊形ABCD為⊙O的內(nèi)接四邊形,且AB=4,AD=4,則∠BCD的度數(shù)為()A.105° B.115° C.120° D.135°6.下列命題是真命題的是()A.如果|a|=|b|,那么a=bB.平行四邊形對角線相等C.兩直線平行,同旁內(nèi)角互補(bǔ)D.如果a>b,那么a2>b27.如圖,在△ABC中,中線AD、BE相交于點(diǎn)F,EG∥BC,交AD于點(diǎn)G,則的值是()A. B. C. D.8.二次函數(shù)圖象上部分點(diǎn)的坐標(biāo)對應(yīng)值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…則該函數(shù)圖象的對稱軸是()A.直線x=﹣3 B.直線x=﹣2 C.直線x=﹣1 D.直線x=09.正六邊形的周長為12,則它的面積為()A. B. C. D.10.△ABC在網(wǎng)絡(luò)中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.11.已知四邊形ABCD的兩條對角線AC與BD互相垂直,則下列結(jié)論正確的是A.當(dāng)AC=BD時(shí),四邊形ABCD是矩形B.當(dāng)AB=AD,CB=CD時(shí),四邊形ABCD是菱形C.當(dāng)AB=AD=BC時(shí),四邊形ABCD是菱形D.當(dāng)AC=BD,AD=AB時(shí),四邊形ABCD是正方形12.圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過閘機(jī)的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每題4分,共24分)13.拋物線y=(x﹣2)2﹣3的頂點(diǎn)坐標(biāo)是____.14.已知是關(guān)于x的一元二次方程的一個(gè)解,則此方程的另一個(gè)解為____.15.如圖,已知正方形ABCD的邊長為1,點(diǎn)M是BC邊上的動(dòng)點(diǎn)(不與B,C重合),點(diǎn)N是AM的中點(diǎn),過點(diǎn)N作EF⊥AM,分別交AB,BD,CD于點(diǎn)E,K,F(xiàn),設(shè)BM=x.(1)AE的長為______(用含x的代數(shù)式表示);(2)設(shè)EK=2KF,則的值為______.16.一個(gè)不透明的布袋里裝有2個(gè)紅球,4個(gè)白球和a個(gè)黃球,這些球除顏色外其余都相同,若從該布袋里任意摸出1個(gè)球是黃球的概率為0.4,則a=_____.17.若是方程的一個(gè)根.則的值是________.18.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=8,DF=3FC,則BC=__________.三、解答題(共78分)19.(8分)(1)如圖1,在中,點(diǎn)在邊上,且,,求的度數(shù);(2)如圖2,在菱形中,,請?jiān)O(shè)計(jì)三種不同的分法(只要有一條分割線段不同就視為不同分法),將菱形分割成四個(gè)三角形,使得每個(gè)三角形都是等腰三角形(不要求寫畫法,要求畫出分割線段,標(biāo)出所得三角形內(nèi)角的度數(shù)).20.(8分)畫出如圖所示幾何體的三視圖21.(8分)已知:如圖,在中,D是AC上一點(diǎn),聯(lián)結(jié)BD,且∠ABD=∠ACB.(1)求證:△ABD∽△ACB;(2)若AD=5,AB=7,求AC的長.22.(10分)如圖1,在中,∠B=90°,,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.問題發(fā)現(xiàn):當(dāng)時(shí),_____;當(dāng)時(shí),_____.拓展探究:試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖2的情況給出證明.問題解決:當(dāng)旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長.23.(10分)在一個(gè)不透明的盒子里裝有三個(gè)標(biāo)記為1,2,3的小球(材質(zhì)、形狀、大小等完全相同),甲先從中隨機(jī)取出一個(gè)小球,記下數(shù)字為后放回,同樣的乙也從中隨機(jī)取出一個(gè)小球,記下數(shù)字為,這樣確定了點(diǎn)的坐標(biāo).(1)請用列表或畫樹狀圖的方法寫出點(diǎn)所有可能的坐標(biāo);(2)求點(diǎn)在函數(shù)的圖象上的概率.24.(10分)如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,且AD//BC,BD的垂直平分線經(jīng)過點(diǎn)O,分別與AD、BC交于點(diǎn)E、F(1)求證:四邊形ABCD為平行四邊形;(2)求證:四邊形BFDE為菱形.25.(12分)如圖1,四邊形ABCD中,,,點(diǎn)P為DC上一點(diǎn),且,分別過點(diǎn)A和點(diǎn)C作直線BP的垂線,垂足為點(diǎn)E和點(diǎn)F.證明:∽;若,求的值;如圖2,若,設(shè)的平分線AG交直線BP于當(dāng),時(shí),求線段AG的長.26.已知二次函數(shù)中,函數(shù)與自變量的部分對應(yīng)值如下表:(1)求該二次函數(shù)的關(guān)系式;(2)若,兩點(diǎn)都在該函數(shù)的圖象上,試比較與的大?。?/p>

參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2考點(diǎn):切線的性質(zhì);最值問題.2、B【分析】由平行線的性質(zhì)可得,,可設(shè)AH=5a,HP=3a,求出S△ADE=,由平行線的性質(zhì)可得,可得S△FGM=2,再利用S四邊形DEGF=S△DEM-S△FGM,即可得到答案.【詳解】解:如圖,連接AM,交DE于點(diǎn)H,交BC于點(diǎn)P,

∵DE∥BC,

∴,∴∵的面積為∴S△ADE=×32=設(shè)AH=5a,HP=3a

∵沿著折疊

∴AH=HM=5a,S△ADE=S△DEM=

∴PM=2a,

∵DE∥BC

∴S△FGM=2∴S四邊形DEGF=S△DEM-S△FGM=-2=

故選:B.本題考查了折疊變換,平行線的性質(zhì),相似三角形的性質(zhì),熟練運(yùn)用平行線的性質(zhì)是本題的關(guān)鍵.3、C【解析】∵拋物線的頂點(diǎn)在第四象限,∴﹣>1,<1.∴<1,∴一次函數(shù)的圖象經(jīng)過二、三、四象限.故選C.4、D【分析】根據(jù)AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所對的圓周角相等,求證△ABD△BED,利用其對應(yīng)邊成比例可得,然后將已知數(shù)值代入即可求出DE的長.【詳解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所對的圓周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故選D.本題考查圓周角定理以及相似三角形的判定與性質(zhì),根據(jù)其定理進(jìn)行分析.5、A【分析】作OE⊥AB于E,OF⊥AD于F,連接OA,如圖,利用垂徑定理和解直角三角形的知識(shí)分別在Rt△AOE和Rt△AOF中分別求出∠OAE和∠OAF的度數(shù),進(jìn)而可得∠EAF的度數(shù),然后利用圓內(nèi)接四邊形的性質(zhì)即可求得結(jié)果.【詳解】解:作OE⊥AB于E,OF⊥AD于F,連接OA,如圖,則AE=AB=2,AF=AD=2,在Rt△AOE中,∵cos∠OAE=,∴∠OAE=30°,在Rt△AOF中,∵cos∠OAF=,∴∠OAF=45°,∴∠EAF=30°+45°=75°,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠C=180°﹣∠BAC=180°﹣75°=105°.故選:A.本題考查了垂徑定理、解直角三角形和圓內(nèi)接四邊形的性質(zhì)等知識(shí),屬于??碱}型,熟練掌握上述基本知識(shí)是解題的關(guān)鍵.6、C【解析】根據(jù)絕對值的定義,平行線的性質(zhì),平行四邊形的性質(zhì),不等式的性質(zhì)判斷即可.【詳解】A、如果|a|=|b|,那么a=±b,故錯(cuò)誤;B、平行四邊形對角線不一定相等,故錯(cuò)誤;C、兩直線平行,同旁內(nèi)角互補(bǔ),故正確;D、如果a=1>b=﹣2,那么a2<b2,故錯(cuò)誤;故選C.本題考查了絕對值,不等式的性質(zhì),平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握各性質(zhì)定理是解題的關(guān)鍵.7、C【分析】先證明AG=GD,得到GE為△ADC的中位線,由三角形的中位線可得GEDCBD;由EG∥BC,可證△GEF∽△BDF,由相似三角形的性質(zhì),可得;設(shè)GF=x,用含x的式子分別表示出AG和AF,則可求得答案.【詳解】∵E為AC中點(diǎn),EG∥BC,∴AG=GD,∴GE為△ADC的中位線,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.設(shè)GF=x,則FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故選:C.本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì),是解答本題的關(guān)鍵.8、B【分析】根據(jù)二次函數(shù)的對稱性確定出二次函數(shù)的對稱軸,然后解答即可.【詳解】解:∵x=﹣3和﹣1時(shí)的函數(shù)值都是﹣3相等,∴二次函數(shù)的對稱軸為直線x=﹣1.故選B.本題考查二次函數(shù)的圖象.9、D【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為12,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,

∴∠BOC=×360°=60°,

∵OB=OC,∴△OBC是等邊三角形,

∵正六邊形ABCDEF的周長為12,

∴BC=12÷6=2,

∴OB=BC=2,∴BM=BC=1,

∴OM==,

∴S△OBC=×BC×OM=×2×=,

∴該六邊形的面積為:×6=6.

故選:D.此題考查了圓的內(nèi)接六邊形的性質(zhì)與等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.10、B【解析】作AD⊥BC的延長線于點(diǎn)D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.11、C【解析】試題分析:A、對角線AC與BD互相垂直,AC=BD時(shí),無法得出四邊形ABCD是矩形,故此選項(xiàng)錯(cuò)誤.B、當(dāng)AB=AD,CB=CD時(shí),無法得到四邊形ABCD是菱形,故此選項(xiàng)錯(cuò)誤.C、當(dāng)兩條對角線AC與BD互相垂直,AB=AD=BC時(shí),∴BO=DO,AO=CO,∴四邊形ABCD是平行四邊形.∵兩條對角線AC與BD互相垂直,∴平行四邊形ABCD是菱形,故此選項(xiàng)正確.D、當(dāng)AC=BD,AD=AB時(shí),無法得到四邊形ABCD是正方形,故此選項(xiàng)錯(cuò)誤.故選C.12、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據(jù)端點(diǎn)A與B之間的距離為10cm,即可得到可以通過閘機(jī)的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點(diǎn)A與B之間的距離為10cm,∴通過閘機(jī)的物體的最大寬度為27+10+27=64(cm),故選C.本題主要考查了特殊角的三角函數(shù)值,特殊角的三角函數(shù)值應(yīng)用廣泛,一是它可以當(dāng)作數(shù)進(jìn)行運(yùn)算,二是具有三角函數(shù)的特點(diǎn),在解直角三角形中應(yīng)用較多.二、填空題(每題4分,共24分)13、(2,﹣3)【分析】根據(jù):對于拋物線y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點(diǎn)坐標(biāo)是(2,﹣3).故答案為(2,﹣3)本題考核知識(shí)點(diǎn):拋物線的頂點(diǎn).解題關(guān)鍵點(diǎn):熟記求拋物線頂點(diǎn)坐標(biāo)的公式.14、【分析】將x=-3代入原方程,解一元二次方程即可解題.【詳解】解:將x=-3代入得,a=-1,∴原方程為,解得:x=1或-3,本題考查了含參的一元二次方程的求解問題,屬于簡單題,熟悉概念是解題關(guān)鍵.15、x【分析】(1)根據(jù)勾股定理求得AM,進(jìn)而得出AN,證得△AEN∽△AMB,由相似三角形的性質(zhì)即可求得AE的長;(2)連接AK、MG、CK,構(gòu)建全等三角形和直角三角形,證明AK=MK=CK,再根據(jù)四邊形的內(nèi)角和定理得∠AKM=90°,利用直角三角形斜邊上的中線等于斜邊的一半得NK=AM=AN,然后根據(jù)相似三角形的性質(zhì)求得==x,即可得出=x.【詳解】(1)解:∵正方形ABCD的邊長為1,BM=x,∴AM=,∵點(diǎn)N是AM的中點(diǎn),∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案為:;(2)解:如圖,連接AK、MG、CK,由正方形的軸對稱性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N為AM中點(diǎn),∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四邊形ABMK的內(nèi)角和為360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM為斜邊,N為AM的中點(diǎn),∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案為:x.本題是四邊形的綜合題,考查了正方形的性質(zhì),相似三角形的判定和性質(zhì),全等三角形判定和性質(zhì),等腰三角形的性質(zhì),以及直角三角形斜邊.上的中線的性質(zhì),證得KN=

AN是解題的關(guān)鍵.16、1【解析】根據(jù)黃球個(gè)數(shù)÷總球的個(gè)數(shù)=黃球的概率,列出算式,求出a的值即可.【詳解】根據(jù)題意得:=0.1,解得:a=1,經(jīng)檢驗(yàn),a=1是原分式方程的解,則a=1;故答案為1.此題考查了概率公式的應(yīng)用.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.17、【解析】根據(jù)一元二次方程的解的定義,將x=2代入已知方程,列出關(guān)于q的新方程,通過解該方程即可求得q的值.【詳解】∵x=2是方程x2-3x+q=0的一個(gè)根,

∴x=2滿足該方程,

∴22-3×2+q=0,

解得,q=2.

故答案為2.本題考查了方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個(gè)數(shù)代替未知數(shù)所得式子仍然成立.18、6+1.【分析】先延長EF和BC,交于點(diǎn)G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出比例式,DF=3FC計(jì)算得出CG與DE的倍數(shù)關(guān)系,并根據(jù)BG=BC+CG進(jìn)行計(jì)算即可.【詳解】解:延長EF和BC,交于點(diǎn)G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點(diǎn)F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設(shè)CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.本題主要考查矩形的性質(zhì)、相似三角形性質(zhì)和判定以及等腰三角形的性質(zhì),解決問題的關(guān)鍵是得出BG=BE,從而進(jìn)行計(jì)算.三、解答題(共78分)19、(1);(2)詳見解析.【分析】(1)設(shè),利用等邊對等角,可得,,根據(jù)三角形外角的性質(zhì)可得,再根據(jù)等邊對等角和三角形的內(nèi)角和公式即可求出x,從而求出∠B.(2)根據(jù)等腰三角形的定義和判定定理畫圖即可.【詳解】證明:(1)設(shè)∵∴又∵∴∴又∵∴又∵∴解出:∴(2)根據(jù)等腰三角形的定義和判定定理,畫出如下圖所示,(任選其三即可).此題考查的是等腰三角形的性質(zhì)及判定,掌握等邊對等角、等角對等邊和方程思想是解決此題的關(guān)鍵.20、見解析【分析】主視圖、左視圖、俯視圖是分別從幾何體的正面、左面和上面所得到的圖形,畫圖時(shí)要將幾何體邊緣和棱以及頂點(diǎn)都體現(xiàn)出來.【詳解】解:如下圖本題考查的知識(shí)點(diǎn)是作簡單幾何體的三視圖,掌握三視圖的作法是解題的關(guān)鍵.21、(1)見詳解;(2)【詳解】(1)證明:∵∠A=∠A,∠ABD=∠ACB,∴△ABD∽△ACB.(2)解:∵△ABD∽△ACB,∴,∴,∴22、(1)①;②;(2)的大小沒有變化;(3)BD的長為:.【分析】(1)①當(dāng)α=0°時(shí),在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)D、E分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出的值是多少.②α=180°時(shí),可得AB∥DE,然后根據(jù),求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,然后由相似三角形的對應(yīng)邊成比例,求得答案.(3)分兩種情況分析,A、D、E三點(diǎn)所在直線與BC不相交和與BC相交,然后利用勾股定理分別求解即可求得答案.【詳解】解:(1)①當(dāng)α=0°時(shí),∵Rt△ABC中,∠B=90°,∴AC=,∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn),∴AE=AC=5,BD=BC=4,∴.②如圖1,當(dāng)α=180°時(shí),可得AB∥DE,∵,∴.故答案為:①;②.(2)如圖2,當(dāng)0°≤α<360°時(shí),的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn),∴DE=AB=3,∴AE=AD+DE=,由(2),可得:,∴BD=;②如圖4,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn),∴DE=AB=3,∴AE=AD-DE=,由(2),可得:,∴BD=AE=.綜上所述,BD的長為:.此題屬于旋轉(zhuǎn)的綜合題.考查了、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識(shí).注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.23、(1)見解析;(2).【分析】(1)根據(jù)列表分與樹形圖法即可寫出結(jié)果;

(2)把所有P點(diǎn)坐標(biāo)代入函數(shù)解析式中即可求解.【詳解】(1)樹狀圖如下:

由樹狀圖得,點(diǎn)P所有可能的坐標(biāo)為:

(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)把代入函數(shù)解析式,得,把代入函數(shù)解析式,得,把代入函數(shù)解析式,得,9個(gè)點(diǎn)中有(1,2)、(2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論