版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,空地上(空地足夠大)有一段長為的舊墻,小敏利用舊墻和木欄圍成一個矩形菜園,已知木欄總長,矩形菜園的面積為.若設,則可列方程()A. B.C. D.2.近年來,移動支付已成為主要支付方式之一.為了解某校800名學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:下面有四個推斷:①從全校學生中隨機抽取1人,該學生上個月僅使用A支付的概率為0.3;②從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.45;③估計全校僅使用B支付的學生人數(shù)為200人;④這100名學生中,上個月僅使用A和僅使用B支付的學生支付金額的中位數(shù)為800元.其中合理推斷的序號是()A.①② B.①③ C.①④ D.②③3.已知反比例函數(shù)y=的圖象經過點(3,2),那么下列四個點中,也在這個函數(shù)圖象上的是()A.(3,-2) B.(-2,-3) C.(1,-6) D.(-6,1)4.的相反數(shù)是()A. B. C.2019 D.-20195.在一個不透明的袋子中,裝有紅球、黃球、籃球、白球各1個,這些球除顏色外無其他差別,從袋中隨機取出一個球,取出紅球的概率為()A.
B.
C.
D.16.如圖,重慶歡樂谷的摩天輪是西南地區(qū)最高的摩天輪,號稱“重慶之限”.摩天輪是一個圓形,直徑AB垂直水平地面于點C,最低點B離地面的距離BC為1.6米.某天,媽媽帶著洋洋來坐摩天輪,當她站在點D仰著頭看見摩天輪的圓心時,仰角為37o,為了選擇更佳角度為洋洋拍照,媽媽后退了49米到達點D’,當洋洋坐的橋廂F與圓心O在同一水平線時,他俯頭看見媽媽的眼睛,此時俯角為42o,已知媽媽的眼睛到地面的距離為1.6米,媽媽兩次所處的位置與摩天輪在同一平面上,則該摩天輪最高點A離地面的距離AC約是()(參考數(shù)據(jù):sin37o≈0.60,tan37o≈0.75,sin42o≈0.67,tan42o≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米7.如圖,將繞點旋轉180°得到,設點的坐標為,則點的坐標為()A. B. C. D.8.下列方程中,為一元二次方程的是()A.2x+1=0; B.3x2-x=10; C.; D..9.如圖,在菱形ABCD中,AB=5,對角線AC=6.若過點A作AE⊥BC,垂足為E,則AE的長為()A.4 B.2.4 C.4.8 D.510.已知,滿足,則的值是().A.16 B. C.8 D.11.如圖,在正方形中,分別為的中點,交于點,連接,則()A.1:8 B.2:15 C.3:20 D.1:612.如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點E,連接OD、OC、BE、AE,BE與OC相交于點P,AE與OD相交于點Q,已知AD=4,BC=9,以下結論:①⊙O的半徑為,②OD∥BE,③PB=,④tan∠CEP=其中正確結論有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖在平面直角坐標系中,若干個半徑為個單位長度、圓心角為的扇形組成一條連續(xù)的曲線,點從原點出發(fā),沿這條曲線向右上下起伏運動,點在直線上的速度為每秒2個單位,在弧線上的速度為每秒個單位長度,則秒時,點的坐標是_______;秒時,點的坐標是_______.14.如圖,在中,,,點在上,且,則______.______.15.計算:sin45°·cos30°+3tan60°=_______________.16.分別寫有數(shù)字0,|-2|,-4,,-5的五張卡片,除數(shù)字不同外其它均相同,從中任抽一張,那么抽到非負數(shù)的概率是_________.17.如圖,在中,,,把繞點順時針旋轉得到,若點恰好落在邊上處,則______°.18.設a,b是方程x2+x﹣2018=0的兩個實數(shù)根,則(a﹣1)(b﹣1)的值為_____.三、解答題(共78分)19.(8分)已知拋物線經過點,,與軸交于點.(1)求這條拋物線的解析式;(2)如圖,點是第三象限內拋物線上的一個動點,求四邊形面積的最大值.20.(8分)如圖,在平面直角坐標系中,正方形OABC的頂點A、C在坐標軸上,△OCB繞點O順時針旋轉90°得到△ODE,點D在x軸上,直線BD交y軸于點F,交OE于點H,OC的長是方程x2-4=0的一個實數(shù)根.(1)求直線BD的解析式.(2)求△OFH的面積.(3)在y軸上是否存在點M,使以點B、D、M三點為頂點的三角形是等腰三角形?若存在,請直接寫出所有符合條件的點M的坐標;若不存在,不必說明理由.21.(8分)一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.(1)從袋中隨機摸出一個球,記錄其顏色,然后放回,攪勻,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.2,求n的值;(2)若,小明兩次摸球(摸出一球后,不放回,再摸出一球),請用樹狀圖畫出小明摸球的所有結果,并求出兩次摸出不同顏色球的概率.22.(10分)寒冬來臨,豆絲飄香,豆絲是鄂州民間傳統(tǒng)美食;某企業(yè)接到一批豆絲生產任務,約定這批豆絲的出廠價為每千克4元,按要求在20天內完成.為了按時完成任務,該企業(yè)招收了新工人,新工人李明第1天生產100千克豆絲,由于不斷熟練,以后每天都比前一天多生產20千克豆絲;設李明第x天(,且x為整數(shù))生產y千克豆絲,解答下列問題:(1)求y與x的關系式,并求出李明第幾天生產豆絲280千克?(2)設第x天生產的每千克豆絲的成本是p元,p與x之間滿足如圖所示的函數(shù)關系;若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)23.(10分)已知△ABC在平面直角坐標系中的位置如圖所示.(1)分別寫出圖中點A和點C的坐標;(2)畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;(3)求點A旋轉到點A′所經過的路線長(結果保留π).24.(10分)如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O分別交AC,BC于點E,F(xiàn)兩點,過點F作FG⊥AB于點G.(1)試判斷FG與⊙O的位置關系,并說明理由;(2)若AC=6,CD=5,求FG的長.25.(12分)一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同.(1)從箱子中任意摸出一個球是白球的概率是多少?(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖.26.如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?
參考答案一、選擇題(每題4分,共48分)1、B【分析】設,則,根據(jù)矩形面積公式列出方程.【詳解】解:設,則,由題意,得.故選.考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.2、B【分析】先把樣本中的僅使用A支付的概率,A,B兩種支付方式都使用的概率分別算出,再來估計總體該項的概率逐一進行判斷即可.【詳解】解:∵樣本中僅使用A支付的概率=,∴總體中僅使用A支付的概率為0.3.故①正確.∵樣本中兩種支付都使用的概率=0.4∴從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.4;故②錯誤.估計全校僅使用B支付的學生人數(shù)為:800=200(人)故③正確.根據(jù)中位數(shù)的定義可知,僅用A支付和僅用B支付的中位數(shù)應在0至500之間,故④錯誤.故選B.本題考查了用樣本來估計總體的統(tǒng)計思想,理解樣本中各項所占百分比與總體中各項所占百分比相同是解題的關鍵.3、B【解析】反比例函數(shù)圖象上的點橫坐標和縱坐標的積為k,把已知點坐標代入反比例解析式求出k的值,即可做出判斷.【詳解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式為y=,則(-2,-3)在這個函數(shù)圖象上,故選:B.此題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法是解本題的關鍵.4、A【解析】直接利用相反數(shù)的定義分析得出答案.【詳解】解:的相反數(shù)是:.故選A.此題主要考查了相反數(shù),正確把握相反數(shù)的定義是解題關鍵.5、C【詳解】解:∵共有4個球,紅球有1個,∴摸出的球是紅球的概率是:P=.故選C.本題考查概率公式.6、B【分析】連接EB,根據(jù)已知條件得到E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,求得BH=FH=OB,設AO=OB=r,解直角三角形即可得到結論.【詳解】解:連接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,∴BH=FH=OB,設AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故選:B.本題考查了解直角三角形——仰角與俯角問題,正方形的判定和性質,正確的作出輔助線是解題的關鍵.7、D【分析】點與點關于點對稱,為點與點的中點,根據(jù)中點公式可以求得.【詳解】解:設點坐標為點與點關于點對稱,為點與點的中點,即解得故選D本題考查了坐標與圖形變換,得出點、點與點之間的關系是關鍵.8、B【解析】試題解析:A.是一元一次方程,故A錯誤;
B.是一元二次方程,故B正確;
C.不是整式方程,故C錯誤;
D.不是一元二次方程,故D錯誤;
故選B.9、C【分析】連接BD,根據(jù)菱形的性質可得AC⊥BD,AO=AC,然后根據(jù)勾股定理計算出BO長,再算出菱形的面積,然后再根據(jù)面積公式BC?AE=AC?BD可得答案.【詳解】連接BD,交AC于O點,∵四邊形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面積是∴BC?AE=24,故選C.10、A【分析】先把等式左邊分組因式分解,化成非負數(shù)之和等于0形式,求出x,y即可.【詳解】由得所以=0,=0所以x=-2,y=-4所以=(-4)-2=16故選:A考核知識點:因式分解運用.靈活拆項因式分解是關鍵.11、A【分析】延長交延長線于點,可證,,,【詳解】解:延長交延長線于點在與中故選A本題考查了相似三角形的性質.12、C【解析】試題解析:作DK⊥BC于K,連接OE.∵AD、BC是切線,∴∠DAB=∠ABK=∠DKB=90°,∴四邊形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切線,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半徑為1.故①錯誤,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正確.在RT△OBC中,PB===,故③正確,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正確,∴②③④正確,故選C.二、填空題(每題4分,共24分)13、【分析】設第n秒時P的位置為Pn,P5可直接求出,根據(jù)點的運動規(guī)律找出規(guī)律,每4秒回x軸,P4n(4n,0),由2019=504×4+3,回到在P3的位置上,過P3作P3B⊥x軸于B,則OB=3,P3B=,P3(3,-),當t=2019時,OP2019=OP2016+OB,此時P2019點縱坐標與P3縱坐標相同,即可求.【詳解】設n秒時P的位置為Pn,過P5作P5A⊥x軸于A,OP4=OP2+P2P4=4,P4(4,0),當t=5時,由扇形知P4P5=2,OP4=4,在Rt△P4P5A中,∠P5P4A=60o,則∠P4P5A=90o-∠P5P4A=60o=30o,P4A=P4P5=1,由勾股定理得PA=,OA=OP4+AP4=5,由點P在第一象限,P(5,),通過圖形中每秒后P的位置發(fā)現(xiàn),每4秒一循環(huán),2019=504×4+3,回到相對在P3的位置上,過P3作P3B⊥x軸于B,則OB=3,P3B=,由P3在第四象限,則P3(3,-),當t=2019時,OP2019=OP2016+OB=4×504+3=2019,P2019點縱坐標與P3縱坐標相同,此時P2019坐標為(2019,-),秒時,點的坐標是(2019,-).故答案為:(5,),(2019,-).本題考查規(guī)律中點P的坐標問題關鍵讀懂題中的含義,利用點運動的速度,考查直線與弧線的時間,發(fā)現(xiàn)都用1秒,而每4秒就回到x軸上,由此發(fā)現(xiàn)規(guī)律便可解決問題.14、【分析】在Rt△ABC中,根據(jù),可求得AC的長;在Rt△ACD中,設CD=x,則AD=BD=8-x,根據(jù)勾股定理列方程求出x值,從而求得結果.【詳解】解:在Rt△ABC中,∵,∴AC=BC=1.設CD=x,則BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案為:1;.本題考查解直角三角形,掌握相關概念是解題的關鍵.15、【分析】先求出各個特殊角度的三角函數(shù)值,然后計算即可【詳解】∵∴原式=故答案為本題考查特殊角度的三角函數(shù)值,熟記特殊角度的三角函數(shù)值是解題的關鍵。16、【分析】根據(jù)概率的求解公式,首先弄清非負數(shù)卡片有3張,共有5張卡片,即可算出概率.【詳解】由題意,得數(shù)字是非負數(shù)的卡片有0,|-2|,,共3張,則抽到非負數(shù)的概率是,故答案為:.此題主要考查概率的求解,熟練掌握,即可解題.17、100【分析】作AC與DE的交點為點O,則∠AOD=∠EOC,根據(jù)旋轉的性質,CD=CB,即∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°,再由AB=AC可得∠B=∠ACB=70°即A=40°,再根據(jù)三角和定理即可得∠AOD=180°-40°-40°=100°,即可解答.【詳解】如圖,作AC交DE為O則∠AOD=∠EOC根據(jù)旋轉的性質,CD=CB,∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°AB=AC∠B=∠ACB=70°∴∠A=40°∠AOD=180°-∠A-∠ADO∠AOD=180°-40°-40°=100°∠AOD=∠EOC∠1=100°本題考查旋轉的性質,解題突破口是作AC與DE的交點為點O,即∠AOD=∠EOC.18、﹣1【分析】由根與系數(shù)的關系可求得a+b與ab的值,代入求值即可.【詳解】∵a,b是方程x2+x﹣2018=0的兩個實數(shù)根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案為﹣1.本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于﹣、兩根之積等于是解題的關鍵.三、解答題(共78分)19、(1);(2)1【分析】(1)將,代入拋物線中求解即可;(2)利用分割法將四邊形面積分成,假設P點坐標,四邊形面積可表示為二次函數(shù)解析式,再利用二次函數(shù)的圖像和性質求得最值.【詳解】解:(1)∵拋物線經過點,,∴,解得,∴拋物線的解析式為,(2)如圖,連接,設點,,四邊形的面積為,由題意得點,∴,∵,∴開口向下,有最大值,∴當時,四邊形的面積最大,最大值為1.本題考查了待定系數(shù)法求二次函數(shù)解析式、分割法求面積、二次函數(shù)的圖象及性質的應用,比較綜合,是中考中的??碱}型.20、(1)直線BD的解析式為:y=-x+1;(2)△OFH的面積為;(3)存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【分析】(1)根據(jù)求出坐標點B(-2,2),點D(2,0),然后代入一次函數(shù)表達式:y=kx+b得,利用待定系數(shù)法即可求出結果.(2)通過面積的和差,S△OFH=S△OFD-S△OHD,即可求解.(3)分情況討論:當點M在y軸負半軸與當點M在y軸正半軸分類討論.【詳解】解:(1)x2-4=0,解得:x=-2或2,
故OC=2,即點C(0,2).∴OD=OC=2,即:D(2,0).又∵四邊形OABC是正方形.∴BC=OC=2,即:B(-2,2).將點B(-2,2),點D(2,0)代入一次函數(shù)表達式:y=kx+b得:,解得:,
故直線BD的表達式為:y=-x+1.(2)直線BD的表達式為:y=-x+1,則點F(0,1),得OF=1.∵點E(2,2),∴直線OE的表達:y=x.解得:∴H∴S△OFH=S△OFD-S△OHD=-==(3)如圖:當點M在y軸負半軸時.情況一:令BD=BM1,此時時,BD=BM1,此時是等腰三角形,此時M1(0,-2).情況二:令M2D=BD,此時,M2D2=BD2=,所以OM=,此時M2(0,-4).如圖:當點M在y軸正半軸時.情況三:令M3D=BD,此時,M3D2=BD2=,所以OM=,此時M3(0,4).情況四:令BM4=BD,此時,BM42=BD2=,所以CM=,所以,OM=MC+OC=6,此時M4(0,6).綜上所述,存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)本題考查的是一次函數(shù)綜合運用,涉及到勾股定理、正方形的基本性質、解一元二次方程等,其中(3),要注意分類求解,避免遺漏.21、(1);(2)【分析】(1)利用頻率估計概率,則摸到綠球的概率為0.2,然后利用概率公式列方程即可;(2)畫出樹狀圖,然后根據(jù)概率公式求概率即可.【詳解】解:(1)∵經過大量實驗,摸到綠球的頻率穩(wěn)定于0.2,∴摸到綠球的概率為0.2∴解得:,經檢驗是原方程的解.(2)樹狀圖如下圖所示:由樹狀圖可知:共有12種等可能的結果,其中兩次摸出不同顏色球的結果共有10種,故兩次摸出不同顏色球的概率為:此題考查的是利用頻率估計概率、畫樹狀圖及概率公式,掌握畫樹狀圖分析結果和利用概率公式求概率是解決此題的關鍵.22、(1),第10天生產豆絲280千克;(2)當x=13時,w有最大值,最大值為1.【分析】(1)根據(jù)題意可得關系式為:y=20x+80,把y=280代入y=20x+80,解方程即可求得;
(2)根據(jù)圖象求得成本p與x之間的關系,然后根據(jù)利潤等于訂購價減去成本價,然后整理即可得到W與x的關系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;【詳解】解:(1)依題意得:令,則,解得答:第10天生產豆絲280千克.(2)由圖象得,當0<x<10時,p=2;當10≤x≤20時,設P=kx+b,把點(10,2),(20,3)代入得,解得∴p=0.1x+1,①1≤x≤10時,w=(4-2)×(20x+80)=40x+160,∵x是整數(shù),∴當x=10時,w最大=560(元);②10<x≤20時,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,=-2(x-13)2+1,∵a=-2<0,∴當x=-=13時,w最大=1(元)綜上,當x=13時,w有最大值,最大值為1.本題考查的是二次函數(shù)在實際生活中的應用,主要是利用二次函數(shù)的增減性求最值問題,利用一次函數(shù)的增減性求最值,難點在于讀懂題目信息,列出相關的函數(shù)關系式.23、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標系中點的位置寫出點的坐標;(2)根據(jù)旋轉圖形的性質畫
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州2025年江蘇蘇州高新區(qū)招聘教師55人筆試歷年參考題庫附帶答案詳解
- 鹽城江蘇鹽城市文化廣電和旅游局直屬單位招錄政府購買服務用工15人筆試歷年參考題庫附帶答案詳解
- 溫州浙江溫州瑞安市發(fā)展和改革局招聘編外用工人員筆試歷年參考題庫附帶答案詳解
- 無錫江蘇無錫高新區(qū)(新吳區(qū))人力資源和社會保障局招聘編外工作人員4人筆試歷年參考題庫附帶答案詳解
- 怒江2025年云南怒江貢山縣醫(yī)學專業(yè)大學生招聘14人筆試歷年參考題庫附帶答案詳解
- 廣東2025年廣東省機關文印中心招聘工作人員8人筆試歷年參考題庫附帶答案詳解
- 宜賓2025年四川省宜賓市中級人民法院招聘3人筆試歷年參考題庫附帶答案詳解
- 四川四川省醫(yī)學科學院·四川省人民醫(yī)院心血管超聲及心功能科醫(yī)師招聘筆試歷年參考題庫附帶答案詳解
- 南充四川南充市住房公積金管理中心和南充市財政綜合服務中心引進3人筆試歷年參考題庫附帶答案詳解
- 內蒙古2025年內蒙古工業(yè)大學招聘21人筆試歷年參考題庫附帶答案詳解
- 校醫(yī)室使用管理制度
- X線攝影檢查技術X線攝影原理的認知講解
- 失業(yè)金領取委托書模板
- 貝雷橋吊裝專項方案(危大工程吊裝方案)
- (完整版)新概念英語第一冊單詞表(打印版)
- 無人機制造裝配工藝智能優(yōu)化
- GB/T 1965-2023多孔陶瓷室溫彎曲強度試驗方法
- 梨樹溝礦區(qū)金礦2022年度礦山地質環(huán)境治理計劃書
- 師德規(guī)范關愛學生
- 太陽能光伏發(fā)電裝置的開發(fā)與推廣商業(yè)計劃書
- 海水淡化用閥門
評論
0/150
提交評論