版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江門市重點中學2026屆中考數(shù)學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.-3的倒數(shù)是()A.3 B.13 C.-12.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某校九年級(1)班學生畢業(yè)時,每個同學都將自己的相片向全班其他同學各送一張留作紀念,全班共送了1980張相片,如果全班有x名學生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.下列運算結果正確的是()A.a3+a4=a7 B.a4÷a3=a C.a3?a2=2a3 D.(a3)3=a65.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定6.某校40名學生參加科普知識競賽(競賽分數(shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分7.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.48.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.9.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm10.如圖,,,則的大小是A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.填在下列各圖形中的三個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.12.已知正方形ABCD的邊長為8,E為平面內任意一點,連接DE,將線段DE繞點D順時針旋轉90°得到DG,當點B,D,G在一條直線上時,若DG=2,則CE的長為_____.13.三人中有兩人性別相同的概率是_____________.14.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.15.已知點A(x1,y1)、B(x2,y2)在直線y=kx+b上,且直線經過第一、二、四象限,當x1<x2時,y1與y2的大小關系為________.16.如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上時,折痕EF的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.18.(8分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.19.(8分)先化簡,再求值:,其中a=+1.20.(8分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.21.(8分)地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)22.(10分)一家蔬菜公司收購到某種綠色蔬菜140噸,準備加工后進行銷售,銷售后獲利的情況如下表所示:銷售方式
粗加工后銷售
精加工后銷售
每噸獲利(元)
1000
2000
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內將這批蔬菜全部加工后銷售完.(1)如果要求12天剛好加工完140噸蔬菜,則公司應安排幾天精加工,幾天粗加工?(2)如果先進行精加工,然后進行粗加工.①試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關系式;②若要求在不超過10天的時間內,將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?23.(12分)兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)獎金金額獲獎人數(shù)20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是;(2)請你補全統(tǒng)計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?24.如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當機器人運作時,,求末端操作器節(jié)點到地面直線的距離.(結果保留根號)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C2、C【解析】:∵點的橫縱坐標均為負數(shù),∴點(-1,-2)所在的象限是第三象限,故選C3、D【解析】
根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關鍵.4、B【解析】
分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.5、C【解析】
眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數(shù),中位數(shù),方差.6、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內,據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內,所以中位數(shù)落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).7、A【解析】
先計算括號內分式的減法,再將除法轉化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.8、B【解析】
先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.9、C【解析】
利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.10、D【解析】
依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點睛】本題主要考查了平行線的性質,兩直線平行,同位角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數(shù)字減上面數(shù)字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.12、2或2.【解析】
本題有兩種情況,一種是點在線段的延長線上,一種是點在線段上,解題過程一樣,利用正方形和三角形的有關性質,求出、的值,再由勾股定理求出的值,根據(jù)證明,可得,即可得到的長.【詳解】解:當點在線段的延長線上時,如圖3所示.過點作于,是正方形的對角線,,,在中,由勾股定理,得:,在和中,,,,當點在線段上時,如圖4所示.過作于.是正方形的對角線,,在中,由勾股定理,得:在和中,,,,故答案為或.【點睛】本題主要考查了勾股定理和三角形全等的證明.13、1【解析】分析:由題意和生活實際可知:“三個人中,至少有兩個人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個人的性別是相同的,∴P(三人中有二人性別相同)=1.點睛:列出本題中所有的等可能結果是解題的關鍵.14、1【解析】
連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.15、y1>y1【解析】分析:直接利用一次函數(shù)的性質分析得出答案.詳解:∵直線經過第一、二、四象限,∴y隨x的增大而減小,∵x1<x1,∴y1與y1的大小關系為:y1>y1.故答案為:>.點睛:此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關鍵.16、4或4.【解析】
①當AF<AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過E作EH⊥MN于H,由矩形的性質得到MH=AE=2,根據(jù)勾股定理得到A′H=,根據(jù)勾股定理列方程即可得到結論;②當AF>AD時,由折疊的性質得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,過A′作HG∥BC交AB于G,交CD于H,根據(jù)矩形的性質得到DH=AG,HG=AD=6,根據(jù)勾股定理即可得到結論.【詳解】①當AF<AD時,如圖1,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,則AM=AD=3,過E作EH⊥MN于H,則四邊形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②當AF>AD時,如圖2,將△AEF沿EF折疊,當折疊后點A的對應點A′恰好落在BC的垂直平分線上,則A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,設MN是BC的垂直平分線,過A′作HG∥BC交AB于G,交CD于H,則四邊形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,綜上所述,折痕EF的長為4或4,故答案為:4或4.【點睛】本題考查了翻折變換-折疊問題,矩形的性質和判定,勾股定理,正確的作出輔助線是解題的關鍵.三、解答題(共8題,共72分)17、(1)60°;(2)證明略;(3)【解析】
(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.18、騎共享單車從家到單位上班花費的時間是1分鐘.【解析】試題分析:設騎共享單車從家到單位上班花費x分鐘,找出題目中的等量關系,列出方程,求解即可.試題解析:設騎共享單車從家到單位上班花費x分鐘,依題意得:解得x=1.經檢驗,x=1是原方程的解,且符合題意.答:騎共享單車從家到單位上班花費的時間是1分鐘.19、【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把a的值代入計算即可求出值.【詳解】原式==,當a=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.20、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質、菱形的性質,相似三角形的判定和性質等知識的綜合運用,解題的關鍵是靈活運用這些知識解決問題,學會添加輔助線構造相似三角形.21、小亮說的對,CE為2.6m.【解析】
先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年心理健康咨詢技能與實踐測試題
- 2026年網(wǎng)絡安全個人信息保護網(wǎng)絡管理員能力測試題
- 2026年糖尿病患者合理飲食與配餐技巧考核題
- 2026年社會心理學重點難點解析題庫
- 2026年電視新聞制作實操模擬題新聞采訪與編輯技巧考核
- 2026年會計職稱考試模擬題財務報表編制與稅務籌劃
- 2026年軟件工程師Java編程技術試題
- 2026年環(huán)境保護法規(guī)考試試題與事故案例分析
- 2026年文獻綜述與論文寫作學術規(guī)范與研究方法題庫
- 2026年殘疾人就業(yè)市場現(xiàn)狀與未來趨勢題庫
- 2024年度高速公路機電設備維護合同:某機電公司負責某段高速公路的機電設備維護2篇
- 《城鎮(zhèn)液化石油氣加臭技術規(guī)程》
- 新高考數(shù)學之圓錐曲線綜合講義第26講外接圓問題(原卷版+解析)
- 癌癥患者生活質量量表EORTC-QLQ-C30
- QCT55-2023汽車座椅舒適性試驗方法
- 孕產婦妊娠風險評估表
- 消化系統(tǒng)疾病健康教育宣教
- 河南省洛陽市2023-2024學年九年級第一學期期末質量檢測數(shù)學試卷(人教版 含答案)
- Unit-3-Reading-and-thinking課文詳解課件-高中英語人教版必修第二冊
- 新版出口報關單模板
- 14K118 空調通風管道的加固
評論
0/150
提交評論